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In this paper, we examine the feasibility (i.e., both the good advantages
and the bad limitations) and the adaptivity (i.e., the potential for beneficial
modifications) of employing multiplier bootstrap to analyze the asymptotic
distributions of the largest eigenvalues of potentially spiked high-dimensional
sample covariance matrices. Our findings and proposed algorithms demon-
strate that multiplier bootstrap remains valid, provided the multipliers are ap-
propriately chosen and the bootstrap procedures are applied multiple times
with suitable corrections. First, for non-spiked sample covariance matrices,
we propose a novel algorithm to replicate the asymptotic distribution (i.e., the
Tracy-Widom law) of their largest eigenvalues. This is achieved by repeatedly
bootstrapping the entire sample covariance matrix using carefully designed
bounded multipliers that satisfy certain concentration properties. We high-
light that unbounded multipliers fail in this setting, as the bootstrapped eigen-
values asymptotically follow a Fréchet or Gumbel distribution. Second, for
spiked sample covariance matrices, while both bounded and unbounded mul-
tipliers can recover the asymptotic normality of the largest eigenvalues, they
may introduce additional bias, particularly when the spikes are not strong.
To mitigate this, we apply a modified multiplier bootstrap multiple times to
correct the bias. Finally, leveraging our modified multiplier bootstrap proce-
dures, we propose a novel and straightforward distribution-based test for se-
lecting common factors in the factor model. Numerical simulations validate
the accuracy and robustness of our proposed methods, demonstrating superior
performance compared to existing approaches in the literature. Technically,
we establish the asymptotic distributions of the largest eigenvalues of boot-
strapped sample covariance matrices for various classes of multipliers in both
spiked and non-spiked models, which may be of independent interest.

1. Introduction

The bootstrap method [30] is a powerful and widely used tool in multivariate statistics and
machine learning. By resampling a single dataset to generate numerous simulated samples,
it facilitates inference even when little is known about the properties of the data-generating
distribution. This approach is particularly appealing when theoretical derivations based on
asymptotic analysis are complex or rely on restrictive assumptions. On a related note, the
covariance matrix plays a central role in virtually every aspect of multivariate data analy-
sis. Over the past few decades, technological advancements have spurred growing interest in
developing methodologies and tools to address the challenges posed by high-dimensionality
and complexity [73]. In particular, extreme eigenvalues of sample covariance matrices are
critical in principal component analysis (PCA) [1, 48]. However, current theoretical findings
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on these extreme eigenvalues often depend on unknown parameters of the population covari-
ance matrix and are typically intricate [8, 73], rendering conventional methods impractical in
many cases.

An intuitive approach to overcome the above challenges is to apply bootstrap methodology
to covariance matrices in the high-dimensional regime. Then, a natural question arises:

Could the asymptotic distribution of extreme sample eigenvalues be effectively approxi-
mated using the multiplier bootstrap method? If not, can the multiplier bootstrap be adapted
to maintain its efficiency in high-dimensional settings for PCA?

Addressing this question is highly non-trivial, as the extreme sample eigenvalues of large
covariance matrices exhibit complex limiting distributions that depend on the structure of the
population covariance matrix. For example, non-spiked covariance matrices often follow the
Tracy-Widom distribution [9, 26, 28, 39, 32, 47, 51, 55, 65], whereas spiked covariance ma-
trices tend to follow some Gaussian distribution [7, 8, 15, 48, 63]. In all these distributions,
the asymptotic results often involve unknown and complex quantities, making it challeng-
ing to apply these results in practice. Moreover, as highlighted in [34, 49], directly applying
standard bootstrap methods in high-dimensional regimes can sometimes yield erratic results
for statistical inference involving extreme eigenvalues. This issue becomes particularly pro-
nounced in scenarios where population spikes are weak or entirely absent; see Section 1.1
below for further discussion of these challenges.

Motivated by these difficulties, this paper provides a comprehensive analysis of the effects
of multiplier bootstrap procedures on the asymptotic behavior of the top eigenvalues of sam-
ple covariance matrices in high-dimensional settings. It also proposes practical and effective
methods for specific statistical tasks using multiplier bootstrap techniques. We demonstrate
that preserving information from the original sample covariance matrix through multiplier
bootstrap procedures poses significant challenges. These challenges often necessitate careful
selection of multipliers, a large number of bootstrap replications, and, in some cases, addi-
tional bias corrections to improve statistical estimates after bootstrapping.

Before going to the details, we first generate our bootstrap procedure for high-dimensional
sample covariance matrices as follow. Consider a sequence of data si ∼ s ∈ Rp,1 ⩽ i ⩽ n,
which are i.i.d. observations of a random vector s such that

(1.1) s=Σ1/2x ∈Rp,

where Σ ∈ Rp×p is deterministic representing the covariance structures in the dataset and
x ∈Rp is a random vector containing i.i.d. centered random variables with variance n−1. For
high-dimensionality, we mean that p and n are comparably large. Now, given a sequence of
data si =Σ1/2xi,1≤ i≤ n, we resample si’s via a sequence of random multipliers ξi ∼ ξ ∈
R which are independent with x. The resampled data can be described as

(1.2) yi = ξiΣ
1/2xi ∈Rp, 1≤ i≤ n.

We may write the resampled data matrix as Y = Σ1/2XD, where X = (xi) and D is a
diagonal matrix containing {ξi}. Then the bootstrapped sample covariance matrix can be
constructed as follows

(1.3) Q := Y Y ∗ ≡Σ1/2XD2X∗Σ1/2.

Technically, understanding the asymptotic behavior of the largest eigenvalues of Q is cru-
cial for analyzing the performance of the multiplier bootstrap for the edge eigenvalues of
the sample covariance matrix. In what follows, we first provide a summary of some related
results in Section 1.1. Then we offer an overview of our contributions in Section 1.2.
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1.1. Summary of some existing related results

In this subsection, we summarize results related to the bootstrap methodology. While the
bootstrap is extensively studied in the literature [3, 12, 18, 30, 31, 66], our focus is specifi-
cally on aspects relevant to sample covariance matrices. The use of the bootstrap for studying
sample covariance matrices dates back to [11, 20, 29] and has since evolved into a powerful
tool in multivariate analysis [1, 18, 61]. Key findings from these studies show that nonpara-
metric bootstrap methods can effectively approximate the eigenvalue distribution of sample
covariance matrices in low-dimensional settings, where the sample size approaches infinity
while the data dimension remains fixed or grows slowly.

More recently, the research has focused on evaluating whether the bootstrap methods can
reliably capture the asymptotic properties of sample covariance matrices in high-dimensional
settings. We summarize some closely related literature as follows. For the global behav-
ior of the spectrum of sample covariance matrices, [57] investigated the problem of boot-
strapping linear spectral statistics for datasets with the structure (1.2). Subsequently, [69]
extended this study to the bootstrap of linear spectral statistics in the high-dimensional el-
liptical model. Moreover, [58] explored the efficiency of bootstrapping the operator norm
under various population decay profiles, while [75] developed a universal bootstrap statistic
based on the covariance operator norm for testing covariance matrices. Additionally, [19]
proposed a nonparametric sampling-with-replacement bootstrap for eigenvalue statistics of
high-dimensional sample covariance matrices.

Regarding individual eigenvalues, much less attention has been given to high-dimensional
settings, except for a few cases under certain structural assumptions. These assumptions gen-
erally ensure that the individual eigenvalues of sample covariance matrices exhibit Gaussian
behavior. For instance, [41] studied the multiplier bootstrap for the largest eigenvalue in a
moderately diverging dimension setting, assuming p = o(n1/9), while [72] investigated the
standard bootstrap for the largest eigenvalue, assuming that the eigenvalues of Σ decay ex-
ponentially. Similar assumptions and results for eigenvectors were established in [60]. More
recently, [74] examined the standard bootstrap under a factor model, assuming strong factor
strength. However, it remains unclear and challenging to determine whether the multiplier
bootstrap can perform effectively in high-dimensional settings without relying on such strong
structural assumptions, as questioned in [34, 49].

Finally, we note that (1.3) is often referred to as a separable sample covariance matrix
in the context of random matrix theory (RMT). In the literature, such models have been
studied primarily under scenarios where both Σ and D are bounded and deterministic; see,
for instance, [17, 28, 33, 64, 71, 76]. However, our focus on the random matrix model in
(1.3) differs from the aforementioned studies, as we treat D2 as random multipliers, whose
range may also be unbounded. Existing results addressing the case of random D are limited
[33, 76], and these are confined to analyzing the limiting spectral distribution under specific
conditions. In this regard, our findings contribute to the RMT literature by providing the
limiting distributions of the edge eigenvalues of a novel class of separable sample covariance
matrices with random structures, which may be of independent interest.

1.2. An overview of our results and contributions

In this section, we provide an informal overview of our results and highlight the main contri-
butions and novelties of our paper. At a high level, our findings and proposed algorithms
demonstrate that the multiplier bootstrap can effectively analyze the asymptotics of the
largest few eigenvalues of sample covariance matrices, whether spiked or not, provided that
the multipliers are appropriately chosen and the bootstrap procedures are applied multiple
times. We elaborate on this in more detail below.
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In Section 3, we examine the feasibility of the multiplier bootstrap for non-spiked sam-
ple covariance matrices in high dimensions. First, Theorem 3.1 reveals that the multiplier
bootstrap fails to replicate the asymptotic Tracy-Widom distribution for the largest eigen-
values of non-spiked sample covariance matrices when the multipliers are unbounded. This
failure arises because, in such a setting, the largest eigenvalues of the bootstrapped sam-
ple covariance matrices instead follow either a Fréchet or Gumbel distribution. Second, in
contrast, Theorem 3.3 shows that for various types of bounded multipliers, the largest eigen-
values of the bootstrapped sample covariance matrices can follow Tracy-Widom, Gaussian,
or Weibull distributions. This makes it possible to recover the asymptotic distribution of the
largest eigenvalues of the sample covariance matrices with appropriately chosen bounded
multipliers, provided that the parameters of the Tracy-Widom law are accurately estimated.
Third, to achieve this, we propose a new modified procedure, Algorithm 1, which generates a
large number of bootstrapped sample covariance matrices using carefully designed bounded
multipliers. Theoretically, Corollary 3.6 establishes that our modified multiplier bootstrap
procedure can effectively capture the Tracy-Widom law for non-spiked sample covariance
matrices—a task previously considered challenging in [34].

In Section 4, we examine the effectiveness of the multiplier bootstrap for spiked sample co-
variance matrices. As established in Theorem 4.1, the largest eigenvalues of the bootstrapped
sample covariance matrices under the spiked model are asymptotically Gaussian, regardless
of whether the multipliers are bounded, under mild assumptions. While this suggests that
the multiplier bootstrap may recover the asymptotic normality of the largest eigenvalues of
the spiked covariance matrix, it also introduces a biased mean and a more intricate variance
structure, as highlighted in Theorems 4.1 and 4.3, particularly when the spikes are not suf-
ficiently strong. Direct theoretical estimation of the asymptotic mean and variance is highly
challenging, requiring stronger assumptions on the spikes and additional technical efforts
[34, 72]. To address these issues, we propose a novel algorithm, Algorithm 2, which utilizes
multiple bootstrapped sample covariance matrices with carefully chosen multipliers whose
effect remains dominated by the actual spikes (cf. (4.1)). Corollary 4.5 demonstrates that
our refined multiplier bootstrap procedure effectively captures the asymptotics of the lead-
ing spiked eigenvalues of the sample covariance matrices under weaker assumptions for the
spikes.

Finally, in Section 5, we explore the application of the multiplier bootstrap to PCA for
selecting common factors, building on our established results. Technically, this problem re-
duces to detecting spikes in a spiked covariance matrix model. Specifically, we propose a
novel distribution-based test using the multiplier bootstrap procedure to test and estimate
the number of spikes. Our new algorithm, Algorithm 3, is simple and leverages the results
and methods developed in Sections 3 and 4. The key idea is to run Algorithm 2 multiple
times with suitably chosen unbounded multipliers and then perform a normality test on the
resulting statistics under a well-established hypothesis (cf. (5.2)). This approach is motivated
by our theoretical findings: under the null hypothesis (i.e., some spikes exist), Corollary 4.5
guarantees that the output statistics from Algorithm 2 are asymptotically Gaussian. How-
ever, under the alternative hypothesis, Theorem 3.1 implies that the statistics follow either a
Fréchet or Gumbel distribution. Consequently, a simple normality test enables us to detect
and consistently estimate the number of spikes (cf. (5.3)).

We note that, technically, this problem reduces to studying the largest eigenvalues of the
bootstrapped sample covariance matrices (1.3) under various assumptions on the multipliers,
for both spiked and non-spiked models. Our analysis reveals that the asymptotic distribu-
tion of these eigenvalues can take various forms, including the three extreme value distribu-
tions for sequences of i.i.d. random variables—Gumbel, Fréchet, and Weibull [10]—as well
as the Tracy-Widom (TW) law, Gaussian, or a mixture of TW and Gaussian distributions.
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The specific distribution depends on D2 (i.e., the multipliers), Σ, the presence of spikes,
and the aspect ratio p/n. These theoretical findings are of independent interest, offering in-
sights into how bootstrap mechanisms influence the spectral limits of covariance matrices.
Consequently, they provide guidance for designing appropriate multiplier mechanisms to ef-
fectively bootstrap the largest eigenvalues in both spiked and non-spiked models for various
statistical applications.

The rest of this article is organized as follows. In Section 2, we give the details of our
model and some basic assumptions. In Section 3, we present the main results of multiplier
bootstrap for the non-spiked covariance matrix model. In Section 4, we study the multiplier
bootstrap for the spiked covariance matrix model. In Section 5, we consider application of
multiplier bootstrap methodologies in common factor selection. Numerical simulations are
also provided to show the usefulness of our algorithm. Some preliminary and proof strategies
are summarized in Section 6. Technique proof and details are deferred to our supplementary
material [25].

Conventions. Let C+ be the complex upper half plane. We denote C > 0 as a generic con-
stant whose value may change from line to line. For two sequences of deterministic positive
values {an} and {bn}, we write an =O(bn) if an ⩽ Cbn for some positive constant C > 0.
In addition, if both an = O(bn) and bn = O(an), we write an ≍ bn. Moreover, we write
an = o(bn) if an ⩽ cnbn for some positive sequence cn ↓ 0. Moreover, for a sequence of ran-
dom variables {xn} and positive real values {an}, we use xn =OP(an) to state that xn/an
is stochastically bounded. Similarly, we use xn = oP(an) to say that xn/an converges to zero
in probability. For a sequence of positive random variables {yn}, we use y(k),1⩽ k ⩽ n, for
its order statistics with y(1) ⩾ y(2) ⩾ · · ·⩾ y(n) > 0.

2. The model and basic assumptions

In this section, we introduce our model and some assumptions. As discussed around (1.3),
we consider bootstrapped data matrix of the following form

(2.1) Y =Σ1/2XD,

where Σ is a p × p deterministic positive definite matrix, D is an n × n diagonal random
weights matrix containing i.i.d. multipliers, and X is a p× n random matrix independent of
D whose entries satisfying the following assumption.

ASSUMPTION 2.1. Throughout the paper, we assume that the entries of X = (xij) are
centered i.i.d. random variables satisfying that for 1⩽ i⩽ p,1⩽ j ⩽ n,

(2.2) Exij = 0, Ex2ij =
1

n
.

Moreover, we assume that for all k ∈ N, there exists some constant Ck > 0 so that
E|
√
nxij |k ⩽Ck.

For the multipliers, we impose the following mild assumptions.

ASSUMPTION 2.2. Let D2 = diag
{
ξ21 , · · · , ξ2n

}
. Moreover, for its entries, we assume

ξ2i ∼ ξ2,1 ⩽ i ⩽ n, are i.i.d. generated from a nonnegative and non-degenerated random
variable ξ2 satisfying the following assumptions.
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(i) Unbounded support case. We assume that ξ2 has an unbounded support and satisfies
either of the following two conditions:
(a). ξ2 is a regularly varying random variable [67] that

(2.3) P(ξ2 > x) =
L(x)

xα
, x→∞,

for some α ∈ [2,+∞), where L(x) is a slowly varying function in the sense that for all
t > 0, limx→∞L(tx)/L(x) = 1.

(b). ξ2 has an exponential decay tail in the sense that for some constant β > 0 and any
fixed constant t > 0

(2.4) Eetξ2β <∞.

(ii) Bounded support case. We assume that ξ2 has a bounded support on (0, l] for fixed
some constant l > 0. Moreover, for some constant d >−1, we assume that

(2.5) P(l− ξ2 ⩽ x)≍ xd+1.

Finally, let F (x) be the cumulative distribution function (CDF) of ξ2, we assume that

(2.6) 0< b := lim
x↑l

1− F (x)

(l− x)d+1
<∞.

REMARK 2.3. Several remarks are in order. First, for the unbounded random multipliers,
(2.3) indicates that the tails of ξ2 decay polynomially. Many commonly used distributions are
included in this category. To name but a few, Pareto distribution, F distribution and student-t
distribution. Moreover, according to extreme value theory (see Lemma S.1.16 of our supple-
ment), when (2.3) is satisfied, ξ2(1) follows Fréchet distribution asymptotically. Second, for
the unbounded setting, (2.4) implies that the tails of ξ2 decay exponentially. In fact, by ele-
mentary calculations [42], it is not hard to see that when (2.4) holds, it is necessarily that the
CDF of ξ2 admits

(2.7) P(ξ2 > x) = exp(−g(x)),

for some positive decreasing function g(x)> 0. Furthermore, if

(2.8) g ∈C∞([0,∞)), lim
x↑∞

(1/g′(x))′ = 0,

we see from Lemma S.1.16 of our supplement that ξ2(1) follows Gumbel distribution asymp-
totically. In fact, many commonly used distributions, for instance, Chi-squared distribution,
exponential distribution and Gamma distribution, satisfy these conditions.

Third, for the bounded random multipliers, (2.5) indicates that ξ2 has a possible polyno-
mial decay behavior near the edge. Under the assumption of (2.6), we see from Lemma S.1.16
of our supplement that ξ2(1) obeys Weibull distribution asymptotically. The conditions allow
for many distributions like (shifted) Beta distribution, uniform distribution and U-quadratic
distribution. In summary, we emphasize that our assumptions in Assumption 2.2 are general
and mild and cover many commonly used multipliers.

The following assumption introduces some mild conditions on the aspect ratio p/n and the
population covariance matrix Σ.

ASSUMPTION 2.4. We assume the following conditions hold true for some small con-
stant 0< τ < 1.
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(i) On dimensionality. Throughout the paper, we consider the high dimensional regime that

(2.9) τ ⩽ ϕ :=
p

n
⩽ τ−1.

(ii) On Σ. For the population covariance matrix Σ, we assume that it admits the following
spectral decomposition

(2.10) Σ=

p∑
j=1

σjvjv
∗
j ,

where

(2.11) τ ⩽ σp ⩽ σp−1 ⩽ · · ·⩽ σ2 ⩽ σ1 ⩽ τ−1,

are the eigenvalues and {vj} are the associated eigenvectors.

We remark that (2.9) is commonly used in random matrix theory and high dimensional
statistics literature for quantifying the high dimensionality. (2.11) states the eigenvalues of
the population covariance matrix are bounded from above and below. On the one hand, when
ξ2 has unbounded support as in Case (i) of Assumption 2.2, (2.11) is the only assumption
imposed on Σ. On the other hand, when ξ2 has bounded support as in Case (ii) of Assumption
2.2, we will provide an additional mild assumption, Assumption S.1.1 of our supplement, to
exclude potential spikes.

In the statistical literature, motivated by real applications, one often adds some spikes
to Σ which results in the famous spiked covariance matrix model [21, 47]. To construct
such a model, one can introduce a perturbed version of Σ, denoted as Σ̃ whose spectral
decomposition follows

(2.12) Σ̃ =

p∑
j=1

σ̃jvjv
∗
j ,

where for some fixed constant r > 0, σ̃1 ⩾ σ̃2 ⩾ · · · ⩾ σ̃r > σ̃r+1 are r values representing
the larger spikes while the rest σ̃j = σj , j ⩾ r + 1’s are relatively small and bounded. For
simplicity and definiteness, we assume that for some constant τ > 0

(2.13)
σ̃i
σ̃i+1

⩾ 1 + τ, 1⩽ i⩽ r.

Based on Σ̃, the counterpart of bootstrapped data matrix (2.1) can be written as

Ỹ = Σ̃1/2XD.

Consequently, the bootstrapped sample covariance matrix (i.e., the counterpart of (1.3)) can
be written as

(2.14) Q̃ := Ỹ Ỹ ∗ ≡ Σ̃1/2XD2X∗Σ̃1/2.

As explained earlier, the understanding of the multiplier boostrap on the edge eigenvalues
of sample covariance matrices boils down to the study of the first few largest eigenvalues of
the p× p bootstrapped sample covariance matrices Q in (1.3) or Q̃ in (2.14). To clarify the
notations used for the various matrices, we summarize them in Table 1.
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Model Quantity Sample version Bootstrapped version

Non-spiked
Matrix S := Σ1/2XX∗Σ1/2 Q := Σ1/2XD2X∗Σ1/2

Eigenvalues {λ̂i} {λi}

Spiked
Matrix S̃ := Σ̃1/2XX∗Σ̃1/2 Q̃ := Σ̃1/2XD2X∗Σ̃1/2

Eigenvalues {µ̂i} {µi}
TABLE 1

Summary of some important notations.

3. Multiplier bootstrap meets the non-spiked covariance matrix
model

In this section, we present the first part of the main results by evaluating the effectiveness
of the bootstrap method for different classes of multipliers. Specifically, we establish the
asymptotic distributions of the largest eigenvalues of the bootstrapped sample covariance
matrix (1.3) when the population covariance matrix Σ lacks significant large spikes. In this
scenario, the extreme eigenvalues of the sample covariance matrix S in Table 1 follow the
Tracy-Widom distribution.

In Section 3.1, we demonstrate that when the multipliers are unbounded, the bootstrap
method becomes invalid. Subsequently, in Section 3.2, we show that the Tracy-Widom law
can be recovered by carefully selecting appropriate multipliers. To achieve this, we propose
a new algorithm, Algorithm 1, specifically designed to address this challenge in Section 3.3.

3.1. The bad: unbounded multipliers are invalid

We first provide the results for the extreme eigenvalues when the multiplier ξ2 has unbounded
support in the sense that (i) of Assumption 2.2 holds. Denote

σ̄1 =
1

p

p∑
i=1

σi, σ̄2 =
1

p

p∑
i=1

σ2
i .

Recall F (x) is the cumulative distribution function (CDF) of ξ2i ,1⩽ i⩽ n. Denote

(3.1) bn := inf

{
x : 1− F (x)⩽

1

n

}
.

Recall from Table 1 that λ1 is the largest eigenvalue of Q.

THEOREM 3.1 (Unbounded multipliers). Suppose Assumptions 2.1, 2.4 and (i) of As-
sumption 2.2 hold. Then we have that when n is sufficiently large

(3.2)
λ1

ξ2(1)
= φ+ oP(1).

where for ϕ in (2.9), φ := ϕσ̄1. Consequently, when (2.3) holds, φ−1λ1 follows the Fréchet
distribution asymptotically in the sense that for x⩾ 0

(3.3) lim
n→∞

P
(

λ1

φbn
⩽ x

)
= exp

(
−x−α

)
.

Moreover, when (2.4) and (2.8) hold, φ−1λ1 follows the Gumbel distribution asymptotically
in the sense that for x ∈R
(3.4) lim

n→∞
P
(
g′(bn)

[
φ−1λ1 − (bn + c0)

]
⩽ x
)
= exp

(
−e−x

)
,
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where we recall g is defined in (2.7) and c0 := 1 +φ−1 ×Eξ2 × σ̄2/σ̄1.

REMARK 3.2. Two remarks are in order. First, Theorem 3.1 states that when ξ2 has un-
bounded support, λ1 will be divergent. Moreover, after being properly centered and scaled,
λ1 will have a similar behavior to ξ2(1). Especially, when ξ2 has a polynomial decay tail as in
(2.3), we can obtain the Fréchet limit and when ξ2 has an exponential decay tail as in (2.4),
we can get the Gumbel limit. Second, Theorem 3.1 also indicates that if we select unbounded
multipliers, the typical Tracy-Widom (TW) limit of largest eigenvalues from sample covari-
ance matrices has no chance to be reproduced. Third, the above results can be generalized to
the joint distribution of k largest eigenvalues for any fixed k. That is, for all si ∈R,1⩽ i⩽ k,
(3.3) can be generalized to

lim
n→∞

P

((
λi

φbn
⩽ si

)
1⩽i⩽k

)
= lim

n→∞
P

(ξ2(i)

bn
⩽ si

)
1⩽i⩽k

 ,

and (3.4) can be generalized to

lim
n→∞

P
(
g′(bn)

(
φ−1λi − (bn + c0)⩽ si

)
1⩽i⩽k

)
= lim

n→∞
P
(
g′(bn)

(
ξ2(i) − (bn + c0)⩽ si

)
1⩽i⩽k

)
.

Since the joint distribution of the order statistics of {ξ2i } can be computed explicitly [16], the
above formulas give a complete description of the finite-dimensional correlation functions
of the extremal eigenvalues. Finally, we mention that the Fréchet distribution and Gumbel
distribution also appear in the literature in heavy-tailed sample covariance matrices, see [4,
43, 44, 45] for example.

3.2. The good: recovering TW law is possible with bounded multipliers

Next, we state the results when the multiplier ξ2 has bounded support in the sense that (ii)
of Assumption 2.2 holds. Recall F (x) and l from (2.6), and using the definitions of m1n,c

and L+ from (6.3) and (6.4) below, we denote

s1 :=

∫ l

0

l2s2

(l− s)2
dF (s), s2 :=

∫ l

0

ls

l− s
dF (s),

s3 :=
1

p

p∑
i=1

σ2
i s1

(L+ − σis2)2
, s4 :=

1

n

p∑
i=1

σi
(−L+ + σis2)2

,

(3.5)

and

v :=

∫ (
s

1 + sm1n,c(L+)

)2

dF (s)−
(∫

s

1 + sm1n,c(L+)
dF (s)

)2

.

Recall the exponent d in (2.5).

THEOREM 3.3 (Bounded multipliers). Suppose Assumptions 2.1, 2.4, S.1.1 and (ii) of
Assumption 2.2 hold. Then we have that when n is sufficiently large,

(1). When d > 1 and ϕ−1 > s3, we have that L+ satisfies

(3.6) 1 =
1

n

p∑
i=1

−lσi
−L+ + σis2

.
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Moreover, we have that

(3.7) n
1

d+1

∣∣∣∣( λ1 −L+

s−1
4 (1− ϕs3)

)
−
(
ξ2(1) − l

)∣∣∣∣= oP(1).

Consequently, we have that λ1 − L+ follows Weibull distribution with parameter d+ 1
asymptotically in the sense that for x⩽ 0

(3.8) lim
n→∞

P
(

(bn)d+1

s−1
4 (1− ϕs3)

(λ1 −L+)⩽ x

)
= exp

(
−|x|d+1

)
,

where b is defined in (2.6).
(2). When d > 1 and ϕ−1 < s3, we have that λ1 is asymptotically Gaussian in the sense that

(3.9) lim
n→∞

P
(√

nv−1(λ1 −L+)⩽ x
)
=Φ(x),

where Φ(x) is the CDF of a real standard Gaussian random variable.
(3). When −1< d⩽ 1, we have that

λ1 −L+ = ν1 + ν2 +OP(n
−1),

where for some γ defined in (S.23) of our supplement, n2/3γν1 follows the type-1 Tracy-
Widom law asymptotically and

√
nν2/v

1/2 follows standard Gaussian distribution asymp-
totically. More specifically, if v= o(n−1/3),

lim
n→∞

P
(
n2/3γ(λ1 −L+)⩽ x

)
=T(x),

where T(x) is the CDF of the type-1 Tracy-Widom distribution. Moreover, if v≫ n−1/3,
(3.9) holds.

REMARK 3.4. Theorem 3.3 shows that, when ξ2 has bounded support as in (2.5), λ1 will
be bounded and can have several phase transitions depending on the exponent d, aspect ratio
ϕ and the threshold s3 which encodes the information of Σ and the distribution of ξ2.

First, in the setting when d > 1, on the one hand, when ϕ−1 > s3, after being properly cen-
tered and scaled, λ1 will have similar asymptotics as ξ2(1) and Weibull limit will be obtained.
On the other hand when ϕ−1 < s3, λ1 will be influenced by all {ξ2i } and hence asymptot-
ically Gaussian. For the critical case ϕ−1 = s3, we believe there will be a phase transition
connecting Gaussian and Weibull. Since this is out of the scope of the paper which focuses
on statistical applications, we will pursue this direction in the future works.

Second, when −1 < d ⩽ 1, the limiting ESD of Q (cf. ρ in Theorem 6.2) will have a
square root decay behavior. In this setting, λ1 will be influenced by two components, the
TW part ν1 and the Gaussian part ν2. The TW part is due to the square root behavior and
the Gaussian is due to the fact that λ1 will be potentially influenced by all {ξ2i }; see Section
S.4.2 of our supplement for more details. We mention that the variance of the Gaussian part
can potentially decay and ν1 and ν2 are in generally dependent. Moreover, by appropriately
choosing the multipliers to ensure the variance of the Gaussian component diminishes, the
fluctuation of λ1−L+ is predominantly governed by the Tracy-Widom distribution. This ap-
proach demonstrates that the Tracy-Widom distribution can be recovered using the bootstrap
method with carefully selected bounded multipliers, as detailed in the following subsection.

Finally, as discussed in Remark 3.2, we can generalize the results of Theorem 3.3 to the
joint distribution of k largest eigenvalues for any fixed k. We omit the details.
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3.3. The modification: adjusted multiplier bootstrap for the TW law

In this subsection, we explore an application of Theorem 3.3 to recover the TW distribution,
which was previously considered a pessimistic task in [34] using the multiplier bootstrap.
As discussed in Remark 3.4, the theoretical insights behind (3) of Theorem 3.3 suggest
that it is, in principle, feasible to recover the TW law by appropriately selecting multipli-
ers ξ2 with sufficiently strong concentration properties, such that the quantity v in Theorem
3.3 decays significantly faster than O(n−1/3). Inspired by [46], a promising candidate is
ξ2 = T−1

∑T
t=1 ζ

2
t , where T is some sufficiently large number and the ζ2t ’s are i.i.d. random

variables satisfying

E(ζ2t ) = 1, E(ζ4t )<∞.

For simplicity, we can take the ζt’s as i.i.d. Gaussian random variables. In this case, it is
straightforward to verify that E(ξ2) = 1 and Var(ξ2) = 2T−1. More importantly, ξ2 can be
shown to exhibit strong convergence around its mean. As a result, for large value of T, we
can have that v= o(n−1/3), and the largest eigenvalue of the bootstrapped matrix will follow
the TW limit as described in (3) of Theorem 3.3.

Below, we propose a novel algorithm to implement the above idea for recovering the TW
distribution by bootstrapping the data matrix Σ1/2X . The key idea is to employ appropriate
multipliers and generate multiple bootstrapped sample covariance matrices.

Algorithm 1 Adjusted multiplier bootstrap for TW law

Inputs: The data matrix Σ1/2X, the size T = ⌊n/2⌋ and number of resampling B = ⌊n5/3⌋.
Step One: For each j = 1, . . . , n, generate T i.i.d. copies of the Gaussian random variable ζ ,
say {ζjt}1≤t≤T . Set ξ2j = T−1

∑T
t=1 ζ

2
jt and construct D2 = diag(ξ21 , . . . , ξ

2
n).

Step Two: Repeat the above procedures B times to obtained a sequence of multiplier
matrices {D2

b}1≤b≤B . Construct the bootstrapped sample covariance matrices from data
matrix Σ1/2X as Qb =Σ1/2XD2

bX
∗Σ1/2,1⩽ b⩽B.

Step Three: Compute the largest eigenvalue of each Qb,1≤ b≤B, denoted as
λb,1,1≤ b≤B. Compute the estimator L̃+ =B−1

∑B
b=1 λb,1.

Output: The empirical distribution (conditional on the data) based on
n2/3{λb,1 − L̃+}1≤b≤B, denoted as FTW(x).

REMARK 3.5. Two remarks are in order. First, in Algorithm 1, the value of T must be
chosen sufficiently large to ensure that the TW fluctuations dominate the limiting behavior of
each λb,1. Second, accurately estimating the unknown parameter L+ requires performing the
bootstrap procedure a sufficiently large number of times—significantly exceeding n4/3—to
reduce the estimation error below the fluctuation level of the TW distribution, which is n−2/3.

The theoretical analysis of Algorithm 1 is summarized in the following corollary, the proof
of which will be provided in Section S.4 of our supplement. This corollary demonstrates that
our proposed Algorithm 1 is capable of recovering the asymptotic distribution of λ̂1 (recall
from Table 1 that λ̂1 denotes the largest eigenvalue of the sample covariance matrix).

COROLLARY 3.6. Recall the notations in Table 1. Suppose the assumptions of Theorem
3.3 hold. Then conditional on the data Σ1/2X, we have that for all x ∈R

(3.10) lim
n→∞

P(n2/3(λ̂1 −E+)≤ x) = lim
n→∞

FTW(x),
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where E+ is the rightmost edge of the limiting spectral distribution of S which is usually
unknown in practice.

As established in the literature (e.g., [9, 26, 28, 32, 47, 51, 55, 65]), the left-hand side of (3.10)
follows a (scaled) TW law. Combined with Theorem 3.3 and Remark 3.4, the right-hand
side is also shown to asymptotically follow a (scaled) TW law. More importantly, Corollary
3.6 makes the application of the TW law practical, as it eliminates the need to estimate the
unknown quantity E+. Finally, we note that Algorithm 1 and Corollary 3.6 can be extended
to the first k largest eigenvalues for any fixed k, as discussed in Remark 3.4. Furthermore,
they can be applied to test the structure of Σ. For a detailed discussion, we refer readers to
Section S.4.4 of our supplement.

4. Multiplier bootstrap meets the spiked covariance matrix model

In this section, we present the second part of our results. Specifically, we derive the asymp-
totic distributions of the largest eigenvalues of the bootstrapped sample covariance matrix
(1.3) when the population covariance matrix Σ exhibits a prominent spiked structure. Under
this setting, the extreme eigenvalues of the sample covariance matrices S̃ in Table 1 follow a
Gaussian distribution with complex variance structures.

In Section 4.1, we demonstrate that the bootstrap method is generally valid, apart from
a bias component, when the population spikes exceed a certain threshold. Building on this,
in Section 4.2, we propose a novel bias correction procedure to enhance the efficiency and
accuracy of the multiplier bootstrap

4.1. The good: multiplier bootstrap can be useful for the spikes

In this section, we demonstrate that the multiplier bootstrap can be a valuable tool for analyz-
ing the asymptotics of large eigenvalues in sample covariance matrices with spiked structures.
Specifically, when suitably chosen multipliers are applied, the leading eigenvalues of the
bootstrapped sample covariance matrix corresponding to the population spikes retain Gaus-
sian distributions, making it possible to study the asymptotics of the largest eigenvalues of
the sample covariance matrices. To formalize this, we introduce the following threshold for
various multipliers according to Assumption 2.2

(4.1) T :=


n1/α logn, if (2.3) holds;
log1/β n, if (2.4) holds;
l, if (2.5) holds.

In fact, T serves as a reference point for identifying suitable multipliers, determined by the
spike strength of Σ̃ as in (2.12). For each 1 ≤ i ≤ r, we denote a deterministic quantity θi
which is the unique solution of the equation,

θi
σ̃i

=

1− 1

nθi

p∑
j=r+1

σj

1− σ̃−1
i σj

−1

,

with restriction θi ∈ [σ̃i,2σ̃i]. Furthermore, we denote
(4.2)

Mi := Eξ2
[(

1

n

p∑
k=r+1

σk
σ̃i

×E(ξ21/Eξ2 − 1)2

)
+

(( 1
n

p∑
k=r+1

σk
σ̃i

)2 ×E(ξ21/Eξ2 − 1)3

)]
,
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and

(4.3) Vi :=
1

n

n∑
j=1

[
p∑

k=r+1

v4ki(m4 − 3) + 3(

p∑
k=r+1

v2ki)
2

]
− 1,

where vi = (v1i, . . . , vpi)
∗ is the eigenvector of Σ̃ and m4 = E(

√
nx11)

4.

Recall from Table 1 that {µi} are the eigenvalues of Q̃.

THEOREM 4.1. Suppose Assumptions 2.1, 2.2 and 2.4 hold. For the spikes in (2.12) and
(2.13), we assume

(4.4) σ̃r ≫ T.

Then conditional on the data matrix Σ̃1/2X , we have for 1⩽ i⩽ r and x ∈R,

(4.5) lim
n→∞

P
(√

n

Vi

(
µi

θi
−Mi

)
⩽ x

)
=Φ(x),

where Mi and Vi are defined in (4.2) and (4.3), respectively, and Φ(x) is the CDF of the
standard Gaussian random variable.

REMARK 4.2. Two remarks are in order. First, the condition (4.4) can be verified in
practice. Recall from Table 1 that {µ̂i} are the eigenvalues of the spiked sample covariance
matrices S̃. Specifically, according to [15], for 1 ⩽ i ⩽ r, it holds that µ̂i/σ̃i = 1 + oP(1).
Consequently, µ̂r can serve as a proxy for σ̃r , offering valuable guidance for selecting suitable
multipliers based on T.

Second, as noted in Table 1, the non-spiked eigenvalues of Q̃ closely follow those of the
non-spiked matrix Q. Specifically, for any fixed integer k, we can show that

(4.6) |µr+i − λi|=OP

(
n−1/2+2ϵd1

)
, 1⩽ i⩽ k,

where d1 is a slowly divergent constant defined in (S.4) of our supplement. By combining
(4.6) with Remark 3.2, we conclude that µr+i (1⩽ i⩽ k) follows either a Fréchet or Gumbel
distribution, depending on the tail behavior of the multiplier. In contrast, Theorem 4.1 shows
that the spiked eigenvalues are always Gaussian. This distinction highlights the differing
distributions of the spiked and non-spiked eigenvalues in the bootstrapped sample covariance
matrix, providing a theoretical foundation for detecting spikes. This aspect will be explored
further in Section 5.

It is important to note that the results in Theorem 4.1 cannot be directly applied in practice
since all θi,Mi and Vi are unknown. In what follows, we show that θi can be replaced by the
eigenvalues of the sample covariance matrix (recall Table 1).

THEOREM 4.3. Under assumptions of Theorem 4.1, we have for 1≤ i≤ r,

(4.7) lim
n→∞

P
(√ n

Vi + 1

(µi

µ̂i
−Mi

)
≤ x
)
=Φ(x),

where Mi and Vi are same as in Theorem 4.1.

REMARK 4.4. The CLT result in Theorem 4.3 highlights that while the multiplier boot-
strap methodology is possibly useful for spiked sample covariance matrices, it generally in-
troduces bias parts, as reflected in Mi and Vi. This sheds light on why the bootstrap technique
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may exhibit instability in approximating the distribution of the top eigenvalues across almost
all types of multipliers, as observed in [49].

In pratice, both Mi and Vi are often hard to be estimated. In the literature, several technical
assumptions are commonly employed to ease this difficulty, such as assuming the population
covariance is isotropic [5, 6, 37, 68] or requiring the spike strength to exceed the threshold of
n1/2 [72, 74]. However, leveraging the intrinsic nature of the bootstrap methodology, one can
approximate Mi and Vi directly through asymptotic normality by performing the multiplier
bootstrap procedure multiple times. The details of this idea will be presented in the next
subsection.

4.2. The modification: adjusting multiplier bootstrap via bias correction

In this subsection, we leverage Theorem 4.3 to develop an algorithm for estimating the
asymptotic mean and variance of µi/µ̂i for 1⩽ i⩽ r so that the modified multiplier bootstrap
can be applied. The idea is similar to Algorithm 1 by running the multiplier bootstrap proce-
dure multiple times using some well-chosen multipliers. The algorithm below encapsulates
this approach.

Algorithm 2 Adjusted multiplier bootstrap for spiked eigenvalues

Inputs: The data matrix Σ̃1/2X, the first r sample eigenvalues {µ̂i}1≤i≤r , the number of
resampling B = ⌊n3/2⌋.
Step One: Choose ξ2 from Assumption 2.2 satisfying T≪ µ̂r . Generate B multiplier
matrices {D2

b}1≤b≤B and construct the bootstrapped covariance matrices
Q̃b = Σ̃1/2XD2

bX
∗Σ̃1/2,1⩽ b⩽B.

Step Two: Compute the top r largest eigenvalue of each Q̃b,1≤ b≤B, denoted as
µb,i,1≤ b≤B,1≤ i≤ r. For each 1≤ i≤ r, computer the estimators
M̂i =B−1

∑B
b=1 µb,i/µ̂i and V̂i = (B − 1)−1

∑B
b=1(µb,i/µ̂i − M̂i)

2.
Output: The empirical distributions (conditional on the data) based on

n1/2{(µb,i/µ̂i − M̂i)/

√
V̂i}1≤b≤B, for each 1≤ i≤ r, denoted as F (i)

G (x).

Similar to the discussions in Remark 3.5, the number of times of multiplier bootstrap
procedures should be sufficiently large, for instance, B ≫ n, to minimize the estimation error
of M̂i and V̂i relative to the Gaussian scaling of n1/2. For simplicity, we choose B = ⌊n3/2⌋.
The theoretical properties of Algorithm 2 can be summarized as follows.

COROLLARY 4.5. Under assumptions in Theorem 4.3, we have for 1 ≤ i ≤ r and all
x ∈R

lim
n→∞

F
(i)
G (x) = Φ(x),

where Φ(x) is the CDF of the standard Gaussian random variable.

Corollary 4.5 provides an application for spike detection. Specifically, if the population co-
variance matrix Σ̃ contains r spikes, the first r empirical distributions F (i)

G , obtained through
Algorithm 2, will approximately follow a standard Gaussian distribution, even when the sup-
port of the multipliers is unbounded. In contrast, for indices i⩾ r+ 1, the distributions F (i)

G
will conform to (rescaled) extreme value distributions, as directly implied by (4.6) and The-
orem 3.1. We explore this application and demonstrate its effectiveness in Section 5.
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5. Statistical applications in common factors selection

In this section, we explore the application of the modified multiplier bootstrap methodology
for selecting common factors in the factor model, drawing on the algorithms and results
presented in Sections 3 and 4.

Suppose we have obtained the data matrix Z = (zi), where zi,1⩽ i⩽ n, are i.i.d. sampled
from the factor model

(5.1) z= Lf + e ∈Rp,

where f is an r× 1 low rank (unobserved) factor, L is a p× r low rank loading matrix and e
is the p× 1 idiosyncratic error which is independent of f . For the purpose of identifiability,
following [5, 6, 37, 68], we assume that Cov(f , f) = Ir. Therefore, the covariance structure
of z can be written as Σ̃ := LL∗ + Cov(e,e). Thanks to its low-rank structure, in high di-
mension, Σ̃ is often assumed to follow a spiked model, as described in (2.12) and (2.13),
[15, 37, 38].

In factor model applications, a key question is determining the number of common factors
needed to explain the economic variables. This can be framed as identifying the number of
spikes, r, in the data matrix Z . More explicitly, we are interested in testing the value of r via
the hypothesis that

(5.2) H0 : r ⩾ r0 vs Ha : r < r0,

where r0 is some pre-given integer representing our belief of the value of r. Based on it, we
can further propose the sequential testing estimator for r as

(5.3) r̂ := sup{r0 ⩾ 0 : H0 is accepted} .

In the literature, many methods based on the eigenvalues of the sample covariance matrix
ZZ∗ have been proposed for the hypothesis testing problem (5.2) in terms of factor models
under our setting, for example, see [2, 5, 15, 37, 62]. However, most of the existing results in
the literature rely on specific structural assumptions about Z or employ complex techniques
to predict its limiting spectral behavior. In contrast, we propose a novel and straightforward
distribution-biased test for (5.2), leveraging our modified multiplier bootstrap methods out-
lined in Algorithms 1 and 2. In the following, we write W := ZD2Z∗ as the bootstrapped
matrix of ZZ∗, and we abusively denote their eigenvalues as {µ̂i} (from ZZ∗) and {µi}
(from W ), respectively.

Intuitively, Corollary 4.5 suggests that under the null hypothesis, the statistics used in Al-
gorithm 2 are asymptotically Gaussian when conditioned on the data, provided that appropri-
ately chosen multipliers (both bounded and unbounded) are used. Furthermore, Theorem 3.1
indicates that when the multipliers have unbounded supports, the statistics from Algorithm
2 follow an extreme value distribution rather than a Gaussian distribution. Consequently, by
employing well-chosen unbounded multipliers and running Algorithm 2, we can perform the
Kolmogorov-Smirnov test for normality to evaluate (5.2). The algorithm is presented below.
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Algorithm 3 Multiplier Bootstrapped Distribution Testing for (5.2)
Inputs: Pre-chosen integer r0, data matrix Z , type I error α and the critical value Dn,α from
one-sample Kolmogorov-Smirnov table.
Step One: Compute the sample eigenvalues of ZZ∗, say {µ̂i}1≤i≤n. Choose the
distribution of unbounded multiplier ξ2 by T≪ µ̂r0 .
Step Two: Input data matrix Z , our chosen unbounded multiplier into Algorithm 2 and run
for the largest r0-th sample eigenvalues. Obtain the output F (r0)

G (x).
Step Three: Compute the Kolmogorov-Smirnov statistics Dn,r0 = supx |F

(r0)
G (x)−Φ(x)|

and conduct the Kolmogorov-Smirnov test.
Output: Reject H0 in (5.2) if Dn,r0 >Dn,α.

Generally speaking, under H0, {F (i)
G (x)}1≤i≤r0 are asymptotically standard Gaussian dis-

tribution from Corollary 4.5, while F
(r0)
G (x) will follow either a Fréchet or Gumbel distribu-

tion under Ha. We summarize the theoretical properties of Algorithm 3 as follows.

COROLLARY 5.1. Suppose the assumptions of Corollary 4.5 hold, given some significant
level α,

lim
n→∞

P(Dn,r0 ≤Dn,α) = 1− α, under H0;

while

lim
n→∞

P(Dn,r0 >Dn,α) = 1, under Ha.

In what follows, we conduct Monte-Carlo simulations to demonstrate the accuracy, power
and robustness of our proposed Algorithm 3 under the factor model setup (5.1). For simplic-
ity, considering the setups in [37, 74], in the simulations, for the data matrix Z ∈ Rp×n, we
assume that

Z = δL′F+E,

where L′ ∈ Rp×3 is the loading matrix whose rows are independent Gaussian random vec-
tors in R3 with covariance matrix diag{1.3,0.8,0.5}, F ∈ R3×n is the factor score matrix
independent of L′ with i.i.d. standard Gaussian entries and E ∈Rp×n is a standard Gaussian
matrix independent of the factor loading and score matrices. Here δ ⩾ 0 is the factor strength.
Under this setup, the null of (5.2) can be characterized as H0 : r = 3 which reduces to check-
ing whether δ is large enough. The alternative of (5.2) can be expressed as Ha : r = 0 which
reduces to checking whether δ = 0.

First, we study our proposed statistics. We check the accuracy under α= 0.1 under the null
that r = 3 with δ = 3. Moreover, we also examine the power of the statistics for the alternative
when r = 0 which implies δ = 0. We can conclude from Figure 1 that our Algorithm 3
is reasonably accurate and powerful for various choices of multipliers ξ2 under different
settings of ϕ.

Second, we compare the performance of our approaches with some existing ones. Again,
since most of the existing literature focus on the estimation of the number of the spikes
instead of inferring, we compare the performance of our inference based estimator r̂ in (5.3)
with a few existing ones for estimating the number of factors in the context of factor model.
For definiteness, we compare our estimators with the ones proposed in [2, 5, 15, 37, 62]. In
Figure 2, we compare the accuracy of our estimators when r = 3 using correct detection ratio
(CDR). We can find that our estimators can outperform some of the existing ones especially
when the spikes (i.e., factor strengths) are not that large.
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(b) Simulated power.

FIG 1. Simulated type I error rates and power under the nominal level 0.1 for our proposed Algorithm 3. Here
we consider three different settings of multiplier ξ2 : (I). Gamma distribution with parameters 15 and 15, (II).
exp(1) distribution, and (III). χ21 distribution. We take n = 400 and report the results based on 2,000 Monte-
Carlo simulations. The randomness in Z are i.i.d. Gaussian with mean zero and variance n−1.

6. Some background and strategies for the proof

In this section, we present a concise overview of the proof strategies for the main results in
Sections 3 and 4. To precisely analyze the bootstrap effect on the fluctuation of the largest
eigenvalue of the sample covariance matrix, we leverage and further develop techniques from
random matrix theory to quantify the interaction between the randomness introduced by the
multipliers and the observed data samples. At a high level, guided by concepts from free
probability theory [59], this interaction can be interpreted as the convolution between the
multiplier matrix D and the data matrix X . To clarify the technical details, we begin by
introducing several fundamental notations and concepts from the random matrix theory liter-
ature in Section 6.1, followed by an explanation of our proof strategies in Section 6.2.

6.1. Asymptotic laws

In this section, we introduce some results on the limiting asymptotic laws of the eigenvalues
of the bootstrapped sample covariance matrices Q in (1.3) with its n× n companion Q :=
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FIG 2. Comparison of estimation. In the above figures, "CHP" refers to the method from [15], "AH" refers to
the method from [2], "BN" refers to the method from [5], "FGZ" refers to the method from [37], "ON" refers to
the method from [62], and "RS" refers to our proposed method in Algorithm 3 where the entries of D2 are i.i.d.
exp(1) random variables. Here n = 400 and the entries of X are i.i.d. Gaussian with mean zero and variance
n−1. The CDR is reported using 2,000 simulations.

DX∗ΣXD. Recall that the empirical spectral distributions (ESD) of Q and Q are denoted as

µQ :=
1

p

p∑
i=1

δλi(Q), µQ :=
1

n

n∑
j=1

δλj(Q).

It is well-known that the ESDs can be best described via its the Stieltjes transforms as follows

(6.1) mQ :=

∫
1

x− z
µQ, mQ :=

∫
1

x− z
µQ, z ∈C+.

Since Q and Q share the same non-trivial eigenvalues, it suffices to study µQ and mQ.
The limit of µQ can be described by a system of equations [17, 27, 33, 46, 64, 76]. To avoid
repetitions, we summarize these equations in the following definition.

DEFINITION 6.1 (Systems of consistent equations). For z ∈ C+, we define the triplets
(m1n,m2n,mn) ∈C3

+, via the following systems of equations.

m1n(z) =
1

n

p∑
i=1

σi
−z(1 + σim2n(z))

, m2n(z) =
1

n

n∑
i=1

ξ2i
−z(1 + ξ2im1n(z))

,(6.2)

mn(z) =
1

p

p∑
i=1

1

−z(1 + σim2n(z))
.

For sufficiently large n, we find that µQ has a nonrandom deterministic equivalent and
can be uniquely characterized by the above consistent equations. This is summarized by the
following theorem whose proof can be obtained by following lines of the arguments of [33,
Theorem 2] and [64, Theorem 1] verbatim.

THEOREM 6.2 (Asymptotic laws). Suppose Assumptions 2.1, 2.2 and 2.4 hold. Then
conditional on some event Ω ≡ Ωn that P(Ω) = 1− o(1), for any z ∈ C+, when n is suffi-
ciently large, there exists a unique solution (m1n(z),m2n(z),mn(z)) ∈ C3

+ to the systems
of equations in (6.2). Moreover, mn(z) is the Stieltjes transform of some probability density
function ρ≡ ρn defined on R which can be obtained using the inversion formula.
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REMARK 6.3. Several remarks on Theorem 6.2 are in order. First, the probability event
Ω can be constructed explicitly as in Definition S.1.10 and Lemma S.1.12 in our supplement
[25]. Second, we prove an unconditional counterpart for Theorem 6.2 by integrating out the
randomness of multiplier ξ2. Recall F (x) is the CDF of ξ2. We can define the counterpart
for (6.2) as follows

m1n,c(z) =
1

n

p∑
i=1

σi
−z(1 + σim2n,c(z))

, m2n,c(z) =

∫ l

0

s

−z(1 + sm1n,c(z))
dF (s),

mn,c(z) =
1

p

p∑
i=1

1

−z(1 + σim2n,c(z))
.(6.3)

In this setting, (m1n,c,m2n,c,mn,c) is always deterministic. Especially, when ξ2 has bounded
support as in Case (ii) of Assumption 2.2, we can actually obtain stronger results as in [64]
that the support of the associated probability density function ρ̃ is bounded and denoted as

(6.4) supp(ρ̃) = [L−,L+].

6.2. Sketch of the proof strategies

In this section, we outline the proof strategies for Theorems 3.1, 3.3, and 4.1, focusing on
the largest eigenvalue. We start with the non-spiked model (Section 3). In this setting, the
arguments differ for bounded and unbounded multipliers D. On the one hand, when D has
unbounded support (Theorem 3.1), the eigenvalues will be divergent. In this setting, we utilize
a perturbation argument. However, as in this case, the associated ρ in Theorem 6.2 may also
be unbounded, the perturbation approach developed in [14, 27, 50] cannot be applied directly.
Instead, we modify the perturbation arguments by isolating yi corresponding to the largest
multiplier ξ2(1) from the bootstrapped matrix Y as in (1.3). More explicitly, for the proof of
Theorem 3.1, with m1n(z) in (6.2), the key is to introduce a real auxiliary quantity ϑ1 > 0 to
be the largest solution of

(6.5) 1 + (ξ2(1) + d1)m1n(ϑ1) = 0,

where d1 = oP(ξ
2
(1)) (cf. (S.4) of our supplement) is introduced for some technical reasons.

First, as will be seen in our proofs (cf. (S.3) and (S.8) of our supplement), (6.5) provides
a natural way to connect ϑ1 and ξ2(1) in the sense that ϑ1/ξ

2
(1) = φ + oP(1). Secondly, it

establishes a connection between ϑ1 and λ1 through a modified perturbation argument based
on [14, 21, 27]. Specifically, λ1 can be uniquely characterized by the equation M(λ1) = 0
(cf. (S.5) of our supplement), where M(·) (cf. (S.4) of our supplement) is a random quantity
isolating the column in (2.1) associated with ξ2(1). Using our newly established local laws (cf.
Theorem S.1.8 of our supplement), we can further demonstrate that 1+(ξ2(1)+d1)m1n(λ1)≈
0. Subsequently, a detailed continuity and stability analysis shows that λ1/ϑ1 = 1 + oP(1),
thereby completing the proof of Theorem 3.1.

On the other hand, when the multiplier D has bounded support (Theorem 3.3), our argu-
ments are non-perturbative and extend the approach introduced in [52, 56]. This generaliza-
tion is non-trivial and requires a dedicated analysis of the relationship between multipliers
and the largest eigenvalues. Specifically, it necessitates a sophisticated understanding of the
systems of equations, such as those in (6.2), on local scales. A key input is the distinct lo-
cal behaviors of the asymptotic law (cf. ρ̃(x) in (6.4)) near the edge under varying settings
(cf. Lemma S.1.5 of our supplement). More precisely, we find that ρ̃(x) ∼

√
L+ − x under

the setup of (2) and (3) of Theorem 3.3, and ρ̃(x) ∼ (L+ − x)d under (1) of Theorem 3.3.
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In the actual proof for Theorem 3.3, we decompose λ1 into two components: λ1 − L̂+ and
L̂+ −L+, where the quantity L̂+ is defined as the edge of the conditional density function ρ
in Theorem 6.2 by fixing a realization of the multipliers {ξ2i } on Ω. For cases (2) and (3) of
Theorem 3.3, where the square root behavior emerges, n2/3(λ1− L̂+) asymptotically follows
the Tracy–Widom (TW) law with constant-order variance. Regarding the unconditional dis-
tribution, the fluctuation of L̂+, due to the i.i.d. assumption of D2, is asymptotically Gaussian
by the Central Limit Theorem (CLT), with a variance that may decay to zero. Consequently,
the overall distribution can be expressed as a sum of the TW law and a Gaussian component
(potentially with vanishing variance). For case (1) of Theorem 3.3, the key observation is that
L̂+ can be represented as the solution of

(6.6) m1n(L̂+) =−l−1.

Moreover, for z ∈ C+ in a small neighborhood of L̂+, m1n(z) can be expanded linearly as
m1n(z)−m1n(L̂+) = β(z − L̂+) + o(n−1/(d+1)) for some constant β (cf. Lemma S.1.5 of
our supplement). Then, it allows us to locate λ1 neighboring around L̂+ as

Rem1n(λ1 + iη0)≈−ξ−2
(1) , η0 = n−1/2−ϵd .(6.7)

Connecting (6.7) with l − ξ2(1) and (6.6), we can conclude (3.7) for L̂+. For the uncon-
ditional result with L+, it follows directly from Lemma S.1.5 of our supplement that
L+ = L̂+ +OP(n

−1/2+δ). Since d > 1, we can conclude that λ1 is only influenced by ξ2(1)
and asymptotically Weibull.

We then discuss the proof of the spiked model (Section 4). Given the spiked structure in
(2.12), our proof primarily relies on a perturbative argument tailored for divergent spikes,
as developed in [15]. However, the inclusion of multipliers introduces additional complex-
ity, requiring a generalization of the above perturbative techniques. Due to similarity, our
discussion focuses on Theorem 4.1. A key element of our proof is the introduction of a ran-
dom term, ζ1 (cf. (S.8) of our supplement), which captures the randomness of µ1/θ1 solely
through the randomness of {ξi}. The asymptotic Gaussianity arises from the asymptotic nor-
mality of ζ1, which can be established via a standard central limit theorem (CLT) argument.
To quantify the bias term M1 in (4.2), we carefully analyze ζ1 − θ1/σ̃1. This requires a more
refined analysis of the local scales of the systems defined in Definition 6.1, leveraging our
newly established local laws in Theorems S.1.8 and S.1.9 of our supplement.
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Supplementary material
In this supplement, we provide the proofs for the main results and some auxiliary lem-

mas. As indicated in Section 6 that our actual proof relies on two technical inputs. One is
the detailed analysis of the Stieltjes transforms of the limiting ESD on local scales in some
carefully chosen spectral domains. The other one is a finer control of the randomness of the
quantities associated with ESD. Then, in Section S.1, we provide some preliminary results
and some necessary technique results including averaged local laws. In Section S.2, we prove
the averaged local laws near the edges. In Section S.3, we provide the asymptotic locations
of the edge eigenvalues and prove the main results and other results related to our statistical
applications. Finally, with the above theoretical foundation, the proofs of the main results in
Sections 3 and 4 will be put in Sections S.4 and S.5, some auxiliary lemmas are proved in
Section S.6.

APPENDIX S.1: SOME PRELIMINARY RESULTS

In this section, we introduce some preliminary results which will be used in the proofs.
First, in Section S.1.1, we provide the properties of the asymptotic local laws m1n,m2n and
mn from Definition 6.1 and establish the averaged local laws. Third, in Section S.1.2, we
examine the properties of the entries of D2 and construct some probability events to which
our arguments will be restricted. Finally, in Section S.1.3, we provide some useful lemmas
and a short review of the extreme value theory.

S.1.1. Properties of asymptotic laws and averaged local laws

We start with introducing the properties of the asymptotic local laws as in Definition 6.1.
Recall the definitions of the Stieltjes transforms of ESDs in (6.1). In practice, it is convenient
to define the Green functions of Q and Q for z =E + iη ∈C+,

(S.1) G(z) = (Q− zI)−1 ∈Rp×p, G(z) = (Q− zI)−1 ∈Rn×n.
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Then (6.1) can be rewritten as

mQ =
1

p
trG(z), mQ =

1

n
trG(z).

Before we proceed ahead, we revisit the definition of the systems of equations in Definition
6.1. Thanks to Theorem 6.2, it is easy to see that the study of the systems of equations in (6.2)
can be reduced to the analysis of

(S.2) Fn(m1n(z), z) = 0, z ∈C+,

where Fn(·, ·) are defined as follows

(S.3) Fn(m1n(z), z) =
1

n

p∑
i=1

σi

−z + σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

−m1n(z).

In the actual proof, the conditional and unconditional version in (6.2), (6.3) are both useful
in their own aspects. To be more specific, the conditional version is more powerful when
ξ2 has unbounded support whereas the unconditional version is more convenient when ξ2

has bounded support. Moreover, to avoid the singularity in the definitions of the systems
of equations, we introduce some additional assumption on Σ which will be used when the
multiplier ξ2 has bounded support in the sense of (ii) of Assumption 2.2. Such an assumption
has been frequently used in the random matrix theory literature, for example, see [9, 26, 27,
28, 32, 51, 55]. Recall the notations m2n,c and L+ in Remark 6.3.

ASSUMPTION S.1.1. When (ii) of Assumption 2.2 holds, for Σ satisfying Assumption
2.4, we assume that for some constant τ > 0

min
1⩽i⩽p

|1 + σim2n,c(L+)|⩾ τ.

We now define the sets of spectral parameters as follows. For ξ2 with unbounded support as
in Case (i) of Assumption 2.2, for ϑ1 defined in (6.5) and d1 defined as

(S.4) d1 :=

{
n1/α−ϵ, if (2.3) holds;
1, if (2.4) holds,

we denote for sufficiently large constant C> 0 that

(S.5) Du ≡Du(C) :=
{
z =E + iη ∈C+ : |E − ϑ1|⩽ Cd1, n

−2/3 ≤ η ≤ Cϑ1

}
.

For ξ2 with bounded support as in Case (ii) of Assumption 2.2, for some sufficiently small
constants c, ϵd > 0, we denote (recall L+ in (6.4))
(S.6)
Db ≡Db(c) :=

{
z =E + iη ∈C+ : L+ − c≤E ≤ L+ + c, n−1/2−ϵd ≤ η ≤ n−1/(d+1)+ϵd

}
.

Throughout the paper, we will frequently use the minors of a matrix. For the data matrix
Y in (2.1), denote the index set I = {1, . . . , n}. Given an index set T ⊂ I , we introduce the
notation Y (T ) to denote the p × (n − |T |) minor of Y obtained from removing all the ith
columns of Y for i ∈ T and keep the original indices of Y . In particular, Y (∅) = Y . For con-
venience, we briefly write ({i}), ({i, j}) and {i, j} ∪ T as (i), (i, j) and (ijT ) respectively.
Correspondingly, we denote their sample covariance matrices and resolvents as

(S.7) Q(T ) = (Y (T ))(Y (T ))∗, Q(T ) = (Y (T ))∗(Y (T )).
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and

(S.8) G(T )(z) = (Q(T ) − zI)−1, G(T )(z) = (Q(T ) − zI)−1.

Similar to (6.1) and Definition 6.1, we can define m
(T )
Q (z), m(T )

Q (z), m
(T )
1n (z), m(T )

2n (z) and

m
(T )
n (z) by removing yi, i ∈ T or ξ2i , i ∈ T .

We begin with the summary of the results when ξ2 has unbounded support as in Case
(i) of Assumption 2.2. The proofs will be deferred to Section S.6.1. Conditional on some
probability event, we provide some useful deterministic estimates for m1n,m2n and mn(z)
on the above concerned spectral domain (S.5). Denote the control parameter e as follows

(S.9) e :=

{
logn
n1/α , if (2.3) holds;

1
log1/β n

, if (2.4) holds.

LEMMA S.1.2. Suppose Assumptions 2.1, 2.4 and (i) of Assumption 2.2 hold. For any
fixed realization {ξ2i } ∈Ω where Ω≡Ωn is some probability event that P(Ω) = 1− o(1), we
have

1. For z ∈Du, we have that for some constants C1,C2 > 0

Rem1n(z)≍−E−1, C1ηE
−2 ⩽ Imm1n(z)⩽C2ηE

−1.

2. When |E − µ1| ⩽ Cd1 for some sufficiently large constant C > 0, let m1n(E) =
limη↓0m1n(E + iη), then we have that

m1n(E)≍−E−1.

3. For z ∈Du and e defined in (S.9), we have that

|m2n(z)|=O(e), |mn(z)|=O(E−1),

Imm2n(z) = O(ηE−1), Immn(z) = O(ηE−2).

REMARK S.1.3. The above lemma provides some controls for the Stieltjes transforms.
Four remarks are in order. First, the construction of the probability event Ω will be given
in Section S.1.2. Second, by a discussion similar to (S.8), conditional on Ω, we can re-
place µ1 with φξ2(1). Third, The above results hold when we replace m1n,m2n and mn with

m
(T )
1n ,m

(T )
2n and m

(T )
n for any finite T . Fourth, Lemma S.1.2 also implies the existence of ϑ1

defined in (3.2).

Then we state the results when ξ2 has bounded support as in Case (ii) of Assumption 2.2.
As mentioned in Remark 6.3, for the bounded support case, it will be more convenient to use
both the conditional and unconditional systems. For the conditional setting, when restricted
to Ω, we denote the rightmost edge of ρ as L̂+. Moreover, parallel to (3.5), we introduce the
following quantities

ŝ1 :=
1

n

n∑
j=1

l2ξ4j
(l− ξ2j )

2
, ŝ2 :=

1

n

n∑
j=1

lξ2j
l− ξ2j

, ŝ3 :=
1

p

p∑
i=1

σ2
i ŝ1

(L̂+ − σîs2)2
,(S.10)

ŝ4 :=
1

n

p∑
i=1

σi

(−L̂+ + σîs2)2
.(S.11)

Furthermore, we need the following spectral parameter set

(S.12) D′
b =
{
z ∈Db : |1 + ξ2jm1n,c(z)|>

1

2
n−1/(d+1)−ϵd , for all 2⩽ j ⩽ n

}
.
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REMARK S.1.4. We will see from (S.22) and (S.27) that with probability 1 − oP(1),
λ1 + iη0 ∈D′

b.

LEMMA S.1.5. Suppose Assumptions 2.1, 2.4, S.1.1 and (ii) of Assumption 2.2 hold.
Then for any fixed realization {ξ2i } ∈Ω where Ω≡Ωn is some probability event that P(Ω) =
1− o(1), for sufficiently large n, we have that

(a). If d > 1 and ϕ−1 > ŝ3, L̂+ can be expressed explicitly by the following equation

(S.13) 1 =
1

n

∑
i

−lσi

(−L̂+ + σîs2)
.

Moreover, for any 0≤ κ≤ L̂+,

ρ(L̂+ − κ)≍ κd,(S.14)

Moreover, for some sufficiently small constant ϵ > 0

(S.15) sk = ŝk +O(n−1/2+ϵ), k = 1,2,3,4; L+ = L̂+ +O(n−1/2+ϵ).

In addition, let z = L̂+ − κ+ iη ∈Db, then

m1n(L̂+)−m1n(z) =
ŝ4

(1− ϕŝ3)

(
L̂+ − z

)
+O((logn)(κ+ η)min{d,2}).(S.16)

Similarly, for any z, z′ ∈Db, we have

m1n(z)−m1n(z
′) =

ŝ4
(1− ϕŝ3)

(z − z′) +O((logn)(n−1/(d+1))min{d−1,1}|z − z′|).
(S.17)

Finally, for z ∈D′
b in (S.12), we have that

(S.18) Imm1n(z) = O

(
max

{
η,

1

nη

})
, Immn(z) = O

(
max

{
η,

1

nη

})
.

Moreover, for z0 defined in (6.7), we have that

(S.19) Imm1n(z0)≍ n−1/2, Immn(z0)≍ n−1/2.

and for z =E + iη0 ∈D′
b in (S.12), we have that

(S.20) Imm1n(z)≍ η0, Immn(z)≍ η0,

if |z − z0|⩾Cn−1/2+3ϵd for some constant C > 0.
(b). If −1< d⩽ 1 or d > 1 and ϕ−1 < ŝ3, we have that for some fixed constant τ > 0 and

all 1⩽ i⩽ n

(S.21)
∣∣∣1 + ξ2im1n(L̂+)

∣∣∣⩾ τ.

Moreover, we have that for any 0≤ κ≤ L̂+,

ρ(L̂+ − κ)≍ κ1/2.(S.22)

Equivalently, for some constant γ > 0, we have for κ ↓ 0

(S.23) ρ(L̂+ − κ) =
1

π
γ3/2

√
κ+O(κ).

Finally, the results of (a) an (b) still hold unconditionally when m1n is replaced by m1n,c,

ρ is replaced by ρ̃ and L̂+ is replaced by L+ as in Remark 6.3 where ŝ3 and ŝ4 should be
replaced by s3 and s4 as in (3.5).
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REMARK S.1.6. Using discussions similar to the paragraphs around equation (5.1) of
[52], by (S.16), (S.27) and the fact m1n(L̂+) = −l−1, we see that (6.7) has at least one
solution.

Then we provide the results of the averaged local laws. Throughout the paper, we will
consistently use the notion of stochastic domination to systematize the statements of the
form “ξ is bounded by ζ with high probability up to a small power of n."

DEFINITION S.1.7 (Stochastic domination). (i) Let

ξ =
(
ξ(n)(u) : n ∈N, u ∈ U (n)

)
, ζ =

(
ζ(n)(u) : n ∈N, u ∈ U (n)

)
,

be two families of nonnegative random variables, where U (n) is a possibly n-dependent pa-
rameter set. We say ξ is stochastically dominated by ζ , uniformly in u, if for any fixed (small)
ϵ > 0 and (large) D> 0,

sup
u∈U (n)

P
(
ξ(n)(u)> nϵζ(n)(u)

)
≤ n−D

for large enough n≥ n0(ϵ,D), and we shall use the notation ξ ≺ ζ . Throughout this paper,
the stochastic domination will always be uniform in all parameters that are not explicitly
fixed, such as the matrix indices and the spectral parameter z. If for some complex family ξ
we have |ξ| ≺ ζ , then we will also write ξ ≺ ζ or ξ =O≺(ζ).

(ii) We say an event Ξ holds with high probability if for any constant D> 0, P(Ξ)≥ 1−n−D

for large enough n.

Similar to [17, 27, 64, 71], instead of working directly with mQ and mQ in (6.1), it is more
convenient to study the following quantities

(S.24) m1(z) =
1

n
tr (G(z)Σ) , m2(z) =

1

n

n∑
i=1

ξ2i Gii(z).

Analogously, using the minors in (S.7), we can define m
(T )
1 (z) and m

(T )
2 (z). The following

Theorem S.1.8 summarizes the averaged local laws for unbounded ξ2 which will be used in
our proof for the main results. Its proof can be found in Section S.2.1.

THEOREM S.1.8 (Averaged local laws for unbounded support ξ2). Suppose Assumptions
2.1, 2.4 and (i) of Assumption 2.2 hold. For any fixed realization {ξ2i } ∈Ω where Ω≡ Ωn is
introduced in Lemma S.1.2, let m(1)

1 (z) and m
(1)
1n (z) be defined by removing the column or

entries associated with ξ2(1). We have that the followings hold true uniformly for z ∈Du in
(S.5)

1. If Case (a) of (i) of Assumption 2.2 holds, we have that

m
(1)
1 (z) =m

(1)
1n (z) +O≺

(
n−1/2−2/α

)
.

2. If Case (b) of (i) of Assumption 2.2 holds, we have that

m
(1)
1 (z) =m

(1)
1n (z) +O≺

(
n−1/2

)
.

Then we provide the averaged local laws for bounded ξ2. Recall mQ defined in (6.1).
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THEOREM S.1.9 (Averaged local laws for bounded support ξ2). Suppose Assumptions
2.1, 2.4, S.1.1 and (ii) of Assumption 2.2 hold. When d > 1 and ϕ−1 > s3, for any fixed
realization {ξ2i } ∈Ω where Ω≡Ωn is introduced in Lemma S.1.5, for η0 = n−1/2−ϵd defined
in (6.7), we have that the followings hold true uniformly for z ∈D′

b in (S.12)

|m1n(z)−m1n,c(z)|⩽ n−1/2+ϵd , |m1(z)−m1n(z)|=O≺
(
(nη0)

−1
)
,

and

|mn(z)−mn,c(z)|⩽ n−1/2+ϵd , |mQ(z)−mn(z)|=O≺
(
(nη0)

−1
)
.

S.1.2. Characterization of "good configurations"

In this subsection, independent of Section S.1.1, we define some probability events which
are some "good configurations" for the first few largest eigenvalues of D2. Our proofs will
be restricted on these probability events. In fact, as will be seen in Lemma S.1.12, under
Assumption 2.2, these probability events hold with high probability when n is sufficiently
large.

Recall Assumption 2.2 and

D2 = diag
{
ξ21 , · · · , ξ2n

}
.

Moreover, we define the order statistics of {ξ2i } as

ξ2(1) ⩾ ξ2(2) ⩾ · · ·⩾ ξ2(n).

In what follows, we define these probability events according to the various assumptions of
{ξ2i } in (2.3)–(2.5).

DEFINITION S.1.10. Denote Ω ≡ Ωn be the event on {ξ2i } so that the following condi-
tions hold:

(a). Unbounded support with polynomial decay. When {ξ2i } has unbounded support
with polynomial decay tail as in (2.3), we assume that for all ϵ ∈ (0,1/α), b ∈ (1/2,1] and
some constants C,c > 1, the following holds on Ω

(S.25)

ξ2(1) − ξ2(2) ≥C−1n1/α log−1 n,

C−1n1/α log−1 n≤ ξ2(1) ≤Cn1/α logn,

ξ2(i) − ξ2(i+1) ≥C−1nϵ log−1 n, 1⩽ i <
√
n,

ξ2(1) − ξ2(⌈nb⌉) ≥ c−1n1/α log−1 n,

1

n

n∑
i=1

ξ2i <∞.

(b). Unbounded support with exponential decay. When {ξ2i } has unbounded support
with polynomial decay tail as in (2.4), we assume that for some constant C > 1, the fol-
lowing holds on Ω

(S.26)

ξ2(1) − ξ2(2) ≥C−1 log1/β n,

C−1 log1/β n≤ ξ2(1) ≤C log1/β n,

1

n

n∑
i=1

ξ2i <∞.
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(c). Bounded support with d > 1. When {ξ2i } has bounded support satisfying (2.5) with
d > 1, we assume that for some sufficiently small constant ϵ > 0, ϵd < 1/8(1/2− 1/(d+
1)), 0< b⩽ 1 and 0<Cl < l, the following holds on Ω

(S.27)

n−1/(d+1)−ϵd < l− ξ2(1) < n−1/(d+1) logn,

ξ2(1) − ξ2(2) > n−1/(d+1)−ϵd ,

l− ξ2(⌊bn⌋) >Cl,

1

n

n∑
i=1

ξ2i ≤ l,

∣∣∣∣∣ 1n
n∑

i=1

ξ2i
1 + ξ2im1n,c(z)

−
∫

t

1 + tm1n,c(z)
dF (t)

∣∣∣∣∣≤ Cnϵ

√
n
, for z ∈Db,

where we recall that F (t) is the distribution of ξ2 and C > 0 is some generic constant.

REMARK S.1.11. Two remarks are in order. First, on the event Ω, for the unbounded
support case, according to (a) and (b), we see that the first few largest ξ2i are divergent and
well separated from each other. Second, for the bounded support case, we only provide the
results for d > 1 in (c). Nevertheless, it is easy to see that similar results can be obtained for
−1< d⩽ 1.

The following lemma shows that under Assumption 2.2, the probability event Ω happens
with high probability in all the four settings. The proof will be given in Section S.6.2.

LEMMA S.1.12. Let Ω be the events defined in Definition S.1.10, suppose Assumption
2.2 holds, we then have that when n is sufficiently large

P(Ω) = 1−O(log−D n),

for some constant D> 0.

S.1.3. Some useful lemmas and a summary of extreme value theory

In this subsection, we first provide some technical lemmas which will be used in our proof.
The following resolvent identities play an important role in our proof. Recall the resolvents
defined in (S.1) and the minors defined in (S.7).

LEMMA S.1.13 (Resolvent identities). Let {yi} ⊂ Rp be the columns of Y as in (2.1),
then we have that

Gii(z) =− 1

z + zy∗
iG

(i)(z)yi
,

Gij(z) = zGii(z)G(i)
jj (z)y

∗
iG

(ij)(z)yj i ̸= j,

Gij(z) = G(k)
ij (z) +

Gik(z)Gkj(z)

Gkk(z)
i, j ̸= k.

PROOF. The proof is straightforward using Schur’s complement formula; for example see
[65, Lemma 2.3].
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LEMMA S.1.14 (Some useful matrix identities). For any finite subset T ⊂ {1, . . . , n},
we have that

(S.28)
∥∥∥G(T )Σ1/2

∥∥∥2
F
= η−1 ImTr

(
G(T )Σ

)
.

Moreover, we have that ∣∣∣Tr(G(i) −G)
∣∣∣≤ η−1,∣∣∣Tr(G(i) −G)

∣∣∣≤ |z|−1 + η−1,(S.29) ∣∣∣ImTr(G(i) −G)
∣∣∣≤ η|z|−2 + η−1.

PROOF. Due to similarity, we focus our discussion on the separable covariance i.i.d. data,
i.e., Case (2) of Assumption 2.1. In fact, it is easier to handle Case (1) since Σ can be always
assumed to be diagonal.

We start with the proof of (S.28). Recall (S.8). We can write

G(T ) =
(
Σ1/2X(T )D2X(T )Σ1/2 − z

)−1
.

Let the spectral decomposition Σ= UΛU∗. Observe that

∥G(T )Σ1/2∥2F =Tr

((
Σ1/2X(T )D2X(T )Σ1/2 − z

)−1
UΛU∗

(
Σ1/2X(T )D2X(T )Σ1/2 − z̄

)−1
)

=Tr

(
U
(
Λ1/2U∗X(T )D2X(T )UΛ1/2 − z

)−1
U∗UΛU∗U

(
Λ1/2U∗X(T )D2X(T )UΛ1/2 − z̄

)−1
U∗
)

=

∥∥∥∥(Λ1/2U∗X(T )D2X(T )UΛ1/2 − z
)−1

Λ1/2

∥∥∥∥2
F

= η−1 ImTr

[(
Λ1/2U∗X(T )D2X(T )UΛ1/2 − z

)−1
Λ

]
,

= η−1 ImTr

[
U∗U

(
Λ1/2U∗X(T )D2X(T )UΛ1/2 − z

)−1
U∗UΛ

]
,

= η−1 ImTr
(
G(T )Σ

)
,

where in the fourth step we used Ward’s identity (see the equation below (4.42) of [22]).
Second, the proof of (S.29) follows from the definitions of the resolvents; see [26, Lemma

A.4] and the proof of [9, Lemma 4.6] for more detail.

LEMMA S.1.15 (Large deviation bounds). Let u= (u1, u2, · · · , up)∗, ũ= (ũ1, ũ2, · · · , ũp)∗ ∈
Rp be two real independent random vectors. Moreover, let A be a p× p matrix independent
of the above vectors. Suppose the entries of the random vectors are centered i.i.d. random
variables with variance n−1 and E|

√
nvi|k ⩽Ck, where vi = ui, ũi,1⩽ i⩽ p, then we have

that

|ũ∗u| ≺
√

∥u∥2
n

, |u∗Aũ| ≺ 1

n
∥A∥F , |u∗Au− 1

n
TrA| ≺ 1

n
∥A∥F .

PROOF. The proof can be found in Lemma 3.4 of [65] or Lemma 5.6 of [71].
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In what follows, we provide a mini-review of the extreme value theory for a sequence
of i.i.d. random variables following [42]. For more systematic treatments, we refer to the
monographs [10, 16, 40, 67].

LEMMA S.1.16 (Fisher-Tippett-Gnedenko Theorem). Let {x2i } be a sequence of i.i.d.
random variables and denote Mn := x2(1) as the largest order statistic.

1. If there exist some constants αn > 0 and βn ∈ R and some non-degenerate cdf G such
that α−1

n (Mn − βn) converges in distribution to G, then G belongs to the type of one of
the following three cdfs:

Gumbel : G0(x) = exp(−e−x), x ∈R,

Fréchet : G1,α(x) = exp(−x−α), x⩾ 0, α > 0,

Weibull : G2,α(x) = exp(−|x|α), x⩽ 0, α > 0.

2. Recall (3.1). First, if {xi} satisfies (2.3), we have that

Mn

bn

d⇒G1,α,

Moreover, if we futher assume limx↑∞L(x) = C for some constant C > 0, then bn =

(Cn)1/α. Second, if {xi} satisfies (2.4) and (2.8), we have that

g′(bn)(Mn − bn)
d⇒G0.

Finally, if (2.5) holds, recall b in (2.6), we have that

(bn)1/(d+1)(Mn − l)
d⇒G2,d+1.

PROOF. The proof can be found in the standard textbook or review article regarding ex-
treme value theory. For example, see [42] and [10].

APPENDIX S.2: PROOF OF AVERAGED LOCAL LAWS

In this section, we prove the local laws Theorems S.1.8 and S.1.9.

S.2.1. Unbounded support setting: proof of Theorem S.1.8

In this section, we will prove Theorem S.1.8. Due to similarity, we focus on the proof of part
1 and briefly discuss that of part 2. The proof contains two steps. In the first step, we will
establish the results for the results of Q outside the bulk of the spectrum on the domain D̃u

denoted as follows

(S.1) D̃u ≡ D̃u(C) :=
{
z =E + iη : 0<E − ϑ1 ⩽ Cd1, n

−2/3 ≤ η ≤ Cϑ1

}
.

That is, we will establish the following proposition.

PROPOSITION S.2.1. Under the assumptions of Theorem S.1.8, the following results hold
uniformly on the spectral domain D̃u in (S.1) when conditional on the event Ω in Lemma
S.1.12.

(1). If Case (a) of (i) of Assumption 2.2 holds, we have that

Gij(z) =− δij

z
(
1 +m1n(z)ξ2i

) +O≺

(
n−1/2−1/α

)
,(S.2)
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where δij is the Dirac delta function so that δij = 1 when i= j and δij = 0 when i ̸= j.
Moreover, we have that

m1(z) =m1n(z) +O≺

(
n−1/2−2/α

)
, m2(z) =m2n(z) +O≺

(
n−1/2−1/α

)
,

and

(S.3) mQ(z) =mn(z) +O≺

(
n−1/2−2/α

)
.

(2). If Case (b) of (i) of Assumption 2.2 holds, we have that the results in part (1) hold by
setting α=∞.

Once Proposition S.2.1 is proved, we can quantify the rough locations of the eigenvalues
of Q as summarized in the following lemma.

LEMMA S.2.2. Suppose Assumptions 2.1, 2.4 and (i) of Assumption 2.2 hold. For some
sufficiently large constant C > 0, with high probability, for any fixed realization {ξ2i } ∈ Ω
where Ω≡Ωn is introduced in Lemma S.1.12, for all 1⩽ i⩽min{p,n}, we have that

(S.4) λi(Q) /∈ (ϑ1,Cn1/α logn), if Case (i)-a of Assumption 2.2 holds,

and

(S.5) λi(Q) /∈ (ϑ1,C log1/β n), if Case (i)-b of Assumption 2.2 holds.

PROOF. Due to similarity, we focus our arguments on (S.4). We prove the results by
contradiction. Assume there is an eigenvalue of Q lies in the interval as in (S.4), denote
as λ̂. Let z = λ̂ + in−2/3. Since z ∈ D̃u ⊂ Du as in (S.5), by Lemma S.1.2, we obtain
Immn(z) = ηλ̂−2. According to (S.8) and (S.25), we have that on the event Ω

(S.6) ϑ1 ≳ n1/α log−1 n.

Together with (S.3), we readily see that

ImmQ(z) = Immn(z) + Im(mQ(z)−mn(z))

≺ n−2/α−2/3 + n−1/2−2/α ≺ n−1/2−2/α.
(S.7)

On the other hand, we have

ImmQ(z) =
1

n

∑
i

η

(λi − λ̂)2 + η2
≥ 1

nη
= n−1/3,

which contradicts (S.7). Therefore, there is no eigenvalue in this interval. Similarly, we can
prove (S.5). The only difference is that (S.6) should be replaced by ϑ1 ≳ log1/β n according to
(S.26) so that the error rate in (S.7) should be updated to n−1/2. This completes the proof.

Armed with the above lemma, we can proceed to the second step to conclude the proof of
Theorem S.1.8. In what follows, we first provide the proof of Proposition S.2.1 in Section
S.2.1.1. After that, we prove Theorem S.1.8 in Section S.2.1.2.
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S.2.1.1. Proof of Proposition S.2.1

We first prepare two lemmas. The first one is to establish Proposition S.2.1 for large scale of
η.

LEMMA S.2.3 (Average local law for large η). Proposition S.2.1 holds when η = Cϑ1.

PROOF. In the sequel, without loss of generality, we assume that ξ21 ⩾ ξ22 ⩾ · · ·⩾ ξ2n.
Note that according to (S.8), (S.25) and the definition of d1 in (S.4), on the event Ω, we

have that

(S.8) E ≍ ξ21 .

When η = CE, we have max
{
∥G(T )∥,∥G(T )∥

}
≤ η−1 = C−1E−1 for any finite T ⊂

{1, . . . , n} by definition. The main idea is to explore the relation of m1 and m2 using Lemma
S.1.13. We start with m2. By Lemma S.1.13 and definition of m2 in (S.24), we have

m2 =
1

n

n∑
i=1

ξ2i
−z − zy∗

iG
(i)yi

=
1

n

n∑
i=1

ξ2i
−z(1 + ξ2i n

−1trG(i)Σ+Zi)
,(S.9)

Zi = y∗
iG

(i)yi − ξ2i n
−1trG(i)Σ.

As yi is independent of G(i), by (1) of Lemma S.1.15, we see that

(S.10) Zi ≺
ξ2i
n
∥G(i)Σ∥F ≤ ξ2i

n
∥G(i)∥∥Σ∥F ≺ ξ2i√

nη
.

Moreover, using the definition of m1 in (S.24) and the second resolvent identity, we readily
obtain that for some constant C > 0

(S.11)
1

n
tr(G(i)Σ)−m1(z) =

1

n
y∗
iGΣG(i)yi ≤C

ξ2i
nη2

.

Moreover, by (S.8) and the form of η, we find that for some constant C > 0

|1 + ξ2im1| ≥ 1−CC−1 > 0,

when C> 0 is chosen to be sufficiently large. Together with (S.9), we obtain
(S.12)

m2 =
1

n

n∑
i=1

ξ2i

−z(1 + ξ2im1 +O≺(
ξ2i√
nη
))

=
1

n

n∑
i=1

ξ2i
−z(1 + ξ2im1)

+O≺(n
−1/2−1/α),

where we used (S.25).
Then we work with m1. Decompose that

Q− zI =

n∑
i=1

yiy
∗
i + zm2(z)Σ− z(I +m2(z)Σ).

Applying resolvent expansion to the order one, we obtain that

G=−z−1(I +m2(z)Σ)
−1 + z−1G

(
n∑

i=1

yiy
∗
i + zm2(z)Σ

)
(I +m2(z)Σ)

−1.

Furthermore, using Shernman-Morrison formula, we have that

(S.13) Gyi =
G(i)yi

1 + y∗
iG

(i)yi
.
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Combining the above two identities and Lemma S.1.13, we can further write

G=−z−1(I +m2(z)Σ)
−1 +

[
z−1

n∑
i=1

G(i)(yiy
∗
i − n−1ξ2iΣ)

1+ y∗
iG

(i)yi
(I +m2(z)Σ)

−1

]

+

[
z−1 1

n

n∑
i=1

(G(i) −G)ξ2iΣ

1+ y∗
iG

(i)yi
(I +m2(z)Σ)

−1

]
:=−z−1(I +m2(z)Σ)

−1 +R1 +R2.

(S.14)

In what follows, we control the two error terms R1,R2. For R1, we notice that

z

n
tr(R1Σ) =

1

n

∑
i

tr

(
G(i)(yiy

∗
i − n−1ξ2iΣ)

1+ y∗
iG

(i)yi
(I +m

(i)
2 Σ)−1Σ

)

+
1

n

∑
i

tr

(
G(i)(yiy

∗
i − n−1ξ2iΣ)

1+ y∗
iG

(i)yi
(I +m2Σ)

−1(m
(i)
2 −m2)Σ(I +m

(i)
2 Σ)−1Σ

)
:= R11 + R12.

(S.15)

Since ∥G(i)∥ ≤ η−1, using (S.8), (S.25), with high probability, we have that for some constant
C > 0,

(S.16) |m(i)
2 (z)| ≤ 1

n

∑
j ̸=i

ξ2j |G
(i)
jj | ≤C

log2 n

n1/α
.

Moreover, according to (S.10), with high probability, when n is sufficiently large, we have
that for some constant C > 0

(S.17) |1 + y∗
iG

(i)yi| ≍ |1 + ξ2i n
−1trG(i)Σ|⩾ 1−CC−1 > 0,

whenever C is chosen sufficiently large. Consequently, for all i, we have that

tr
(G(i)(yiy

∗
i − n−1ξ2iΣ)

1+ y∗
iG

(i)yi
(I +m

(i)
2 Σ)−1Σ

)
≍ tr

(
ξ2iG

(i)(uiu
∗
i − n−1I)(I +m

(i)
2 Σ)−1Σ2

)
= ξ2i

(
u∗
iG

(i)(I +m
(i)
2 Σ)−1Σ2ui − n−1tr

(
G(i)(I +m

(i)
2 Σ)−1Σ2

))
≺ ξ2i

1

η
√
n
,(S.18)

where in the third step we used (1) of Lemma S.1.15. Together with (S.25) and (S.8), we find
that

R11 ≺ n−1/2−1/α.

For R12, using the definition in (S.24) and the identity in Lemma S.1.13 and the definition of
G(i) (see (S.28) below), we see that

(S.19) m2(z)−m
(i)
2 (z) =

1

n

n∑
j=1

ξ2j (Gjj −G(i)
jj ) =

1

n

∑
j ̸=i

ξ2j
GjiGij

Gii
+

ξ2i (Gii − |z|−1)

n
.

In addition, using Lemma S.1.13 and a discussion similar to (S.17), we conclude that

1

Gii(z)
=−z − zy∗

iG
(i)yi ≺ |z|.
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Moreover, by Lemmas S.1.13 and S.1.15, we have that

Gij(z) = zGii(z)G(i)
jj (z)y

∗
iG

(ij)yj ≺ |z|η−2|ξiξj |n−1∥G(ij)∥F ≺ n−1/2|z|η−3|ξiξj |, i ̸= j.

Combining the above bounds with (S.25), we see that

m2(z)−m
(i)
2 (z)≺ n−1−1/α.

Together with (S.17) and (S.18), we arrive at

R12 ≺
1

η2n3/2
.

Using the above bounds, we see that
z

n
tr(R1Σ)≺ n−1/2−1/α.

For R2, applying the Sherman–Morrison formula to ((G(i))−1 + yiy
∗
i )

−1, we obtain that

1

n

∣∣∣∣tr((G(i) −G)Σ(I +m2Σ)
−1Σ

1+ y∗
iG

(i)yi

)∣∣∣∣= 1

n

∣∣∣∣y∗
iG

(i)Σ(I +m2Σ)
−1ΣGyi

1 + y∗
iG

(i)yi

∣∣∣∣≺ ξ2i
nη2

,(S.20)

where in the second step we used Lemma S.1.15 and (S.17) and a discussion similar to (S.16).
Together with the definition of R2 in (S.14), by (S.25), we find that

z

n
|tr(R2Σ)| ≤

1

n2

∑
i

ξ2i
η2

≺ n−1−2/α.

As a result, in light of the definition m1 in (S.24), we have

m1 =
1

n
tr(G(z)Σ) =−z−1 1

n
tr((I +m2(z)Σ)

−1Σ)+O≺(n
−1/2−2/α)

=− 1

n

p∑
i=1

σi
z(1 +m2σi)

+O≺(n
−1/2−2/α).

(S.21)

We first control m2(z)−m2n(z). Recall m2n(z) in (6.2). Combing (S.12) and (S.21), we
have that

m2(z)−m2n(z)

=
1

n

n∑
i=1

( ξ2i
−z(1 + ξ2im1)

+
ξ2i

z(1 + ξ2im1n)

)
+O≺(n

−1/2−1/α)

(S.22)

=
1

n

n∑
i=1

ξ4i (m1 −m1n)

z(1 + ξ2im1)(1 + ξ2im1n)
+O≺(n

−1/2−1/α)

=
( 1
n

n∑
i=1

ξ4i
z(1 + ξ2im1)(1 + ξ2im1n)

)( 1
n

n∑
i=1

σ2
i (m2 −m2n)

z(1 + σim2)(1 + σim2n)

)
+O≺(n

−1/2−1/α).

By a discussion similar to (S.16) and (S.17) with high probability, when n is sufficiently
large, we have that

|m2 −m2n|=O
( 1
n

n∑
i=1

ξ4i
z2

|m2 −m2n|
)
+O≺(n

−1/2−1/α)

= O(n−2/α|m2 −m2n|) +O≺(n
−1/2−1/α),
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where in the second step we used (S.25). Then we can conclude that m2−m2n ≺ n−1/2−1/α.
By a similar procedure, we also have m1 −m1n ≺ n−1/2−2/α.

Armed with the above two results, we proceed to finish the rest of the proof. Recall mQ in
(6.1). Using (S.14) and a discussion similar to (S.21), one can see that

mQ =
1

p
tr(G(z)) =−1

p

p∑
i=1

1

z(1 +m2σi)
+O≺(n

−1/2−2/α)

=−1

p

p∑
i=1

1

z(1 +m2nσi)
+

1

p

p∑
i=1

(m2 −m2n)σi
z(1 +m2σi)(1 +m2nσi)

+O≺(n
−1/2−2/α)

=mn +O≺(n
−1/2−2/α),(S.23)

where in the last step we recall mn(z) in (6.2). Finally, for the control of the matrix G, for
the diagonal entries, by Lemma S.1.13 and a discussion similar to (S.10) and S.11, we have

Gii =− 1

z(1 + y∗
iG

(i)yi)
=− 1

z(1 + ξ2i n
−1trG(i)Σ+O≺(

ξ2i√
nη
))

=− 1

z(1 + ξ2im1 +O≺(
ξ2i√
nη
))

=− 1

z(1 + ξ2im1n)
+O≺(n

−1/2−1/α).

For off-diagonal entries, together with Lemmas S.1.13 and S.1.15, we have

|Gij | ≤ |z||Gii||G(i)
ii ||y

∗
iG

(ij)yj | ≺ n−1/2−2/α.

This completes the proof when (2.3) holds. For the case (2.4), the main difference is to use
the estimates of (S.26) instead of (S.25) whenever it is needed, for example, (S.9). We omit
further details. This completes our proof.

The second component is to prove Proposition S.2.1 under a priori control of the resolvent
which is summarized in the following lemma.

LEMMA S.2.4. Proposition S.2.1 holds if (S.2) holds uniformly for z ∈ D̃u.

PROOF. Note that according to the priori control (S.2), we have that for 1⩽ i ̸= j ⩽ n

Gii =
1

z(1 + ξ2im1n(z)
+O≺(n

−1/2−1/α), Gij =O≺(n
−1/2−1/α).(S.24)

For the diagonal entries, when i= 1, using (6.5), we observe that

G11 =− 1

z(1 + ξ21m1n(z))
+O≺(n

−1/2−1/α)

=− 1

z(1 + ξ21m1n(ϑ1))
+

zξ21(m1n(z)−m1n(ϑ1))

(z(1 + ξ21m1n(ϑ1)))(z(1 + ξ21m1n(z)))
+O≺(n

−1/2−1/α)

(S.25)

=
1

zd1m1n(ϑ1)
− zξ21(m1n(z)−m1n(ϑ1))

zd1m1n(ϑ1)

(
G11 +O≺(n

−1/2−2/α)
)
+O≺(n

−1/2−1/α)

=
1

zd1m1n(ϑ1)
− zξ21

zd1m1n(ϑ1)
(G11 +O≺(n

−1/2−1/α))×O≺(n
−1/α) +O≺(n

−1/2−1/α),
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where in the fourth step we used Lemma S.1.2. By Lemma S.1.2, (S.8) and (S.25), this yields
that for some constant C > 0

|G11|=
1

|zd1m1n(ϑ1)|
+O≺(n

−1/2−1/α) =
C

d1
+O≺(n

−1/2−1/α).(S.26)

Similarly, when 2⩽ i⩽ n, by (S.25) and the definition of d1, using Lemma S.1.2, we see
that

(S.27) Gii =O≺(n
−1/α).

We also provide some basic controls for the matrix G(i) for all 1 ⩽ i ⩽ n. By definition
and an elementary calculation, it is not hard to see that

(S.28) G(i)
ii =−z−1; G(i)

ik = 0, 1⩽ k ̸= i⩽ n.

Moreover, using (S.24), (S.27) and the third identity of Lemma S.1.13, we find that for 1⩽
i⩽ n,

(S.29) G(i)
kk =O≺(n

−1/α), k ̸= i; G(i)
kl =O≺(n

−1/2−1/α), k, l ̸= i;

With the above preparation, we now proceed to the control of Zi in (S.9), unlike in (S.10),
since Q and Q have the same non-zero eigenvalues, we control it as follows using the above
bounds

Zi ≺
ξ2i
n
∥G(i)Σ∥F ≺ ξ2i

n
∥G(i)∥F =

ξ2i
n
(tr((G(i))2))1/2 ≤ ξ2i

n
tr((G(i))2)1/2 +

ξ2i
n

√
|n− p|
|z|

≍ ξ2i
n
∥G(i)∥F +

ξ2i
n

n1/2

n1/α
=

ξ2i
n

(
(G(i)

ii )
2 +

∑
j ̸=i

(G(i)
jj )

2 +
∑

j ̸=k ̸=i

(G(i)
jk )

2
)1/2

+
ξ2i

n1/2+1/α

≺ ξ21
n

(
|z|−2 + nn−2/α + n2n−1−2/α

)1/2
+

ξ2i
n1/2+1/α

≺ ξ2i
n1/2+1/α

,

(S.30)

where in the third and fourth steps we used (S.28) and (S.29).
Besides, unlike in (S.11), by a discussion similar to (S.30), we now have from Lemma

S.1.15 that

Ti :=
1

n
trG(i)Σ−m1(z) =

1

n
y∗
iGΣG(i)yi =

1

n

y∗
iG

(i)ΣG(i)yi

1 + y∗
iG

(i)yi

≺ ξ2i
n

n−1∥G(i)∥2F
|1 + y∗

iG
(i)yi|

≺ ξ2i
n2

|z||Gii|
(
∥G(i)∥2F +

n

n2/α

)
,

≺ ξ2i
n1+2/α

.

(S.31)

where in the second step we used the relation (S.13), in the third step we used Lemma S.1.13
and in the last two steps we used a discussion similar to (S.30).

With the above control, we now use an idea similar to the proof of Lemma S.2.3 to con-
clude the proof. The key ingredient is to explore the relation of m1 and m2. We start with
m2. Using the above notations and Lemma S.1.13, we find that

(S.32)
1

−z(1 + ξ2im1(z))
=

1

G−1
ii + z(Zi + Ti)

.
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Consequently, by (S.26), (S.27), (S.30) and (S.31), we see that

(S.33)
1

−z(1 + ξ2im1(z))
≺ n−1/α.

Then using the decomposition as in (S.9), we have that

m2 =
1

n

ξ21
−z(1 + ξ21n

−1 trG(1)Σ+Z1)
+

1

n

n∑
i=2

ξ2i
−z(1 + ξ2i n

−1 trG(i)Σ+Zi)

=
1

n

ξ21
−z(1 + ξ21m1(z) + ξ21n

−1−2/α +Z1)
+

1

n

n∑
i=2

ξ2i
−z(1 + ξ2im1(z) + ξ2i n

−1−2/α +Zi)

=
1

n

n∑
i=1

ξ2i
−z(1 + ξ2im1(z))

+O≺

(
n−3/2 +

1

n

n∑
i=2

ξ4i
|z|n1/2+1/α

)

=
1

n

n∑
i=1

ξ2i
−z(1 + ξ2im1(z))

+O≺(n
−1/2−1/α),

(S.34)

where in the second step we used (S.31), in the third step we used a discussion similar to
(S.25) and in the last step we used (S.25). Then we study m1 using the arguments as between
(S.14) and (S.21). We provide the key ingredients as follows. First, for R11 in (S.15), note
that by definition of m(i)

2 and (S.28), we have that∣∣m(i)
2

∣∣≤ 1

n

(∑
j ̸=i

ξ2j |G
(i)
jj |+ |z|−1

)
≤ 1

n

[∑
j ̸=1

ξ2j

(
|Gjj |+

|Gj1||G1j |
|G11|

)
+ |z|−1

]
≺ n−1/α,

where in the second step we used Lemma S.1.13 and in the last step we used (S.24), (S.27)
and (S.25). Moreover, by Lemma S.1.13 and (S.27), we find that (1 + y∗

iG
(i)yi)

−1 ≺ 1.
Therefore, we conclude that for all 1⩽ i⩽ n,

tr
(G(i)(yiy

∗
i − n−1ξ2iΣ)

1+ y∗
iG

(i)yi
(I +m

(i)
2 Σ)−1Σ

)
≍ tr

(
ξ2iG

(i)(uiu
∗
i − n−1I)(I +m

(i)
2 Σ)−1Σ2

)
= ξ2i

(
u∗
iG

(i)(I +m
(i)
2 Σ)−1Σ2ui − n−1tr

(
G(i)(I +m

(i)
2 Σ)−1Σ2

))
≺ ξ2i

n
∥G(i)∥F ≺ ξ2i

n1/2+1/α
,

where in the last step we used a discussion similar to (S.30). Together with (S.25), we can
conclude that R11 ≺ n−1/2−1/α. For R12, using (S.19), (S.24) and (S.27)

m2 −m
(i)
2 ≺ 1

n

∑
j ̸=i

ξ2i n
−1−2/α

n−1/α
+

1

n
≺ n−1.
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Then by an argument similar to (S.20), we can conclude that R12 ≺ n−1−1/α. Similarly, for
R2, we have that

1

n

∣∣∣∣tr((G(i) −G)Σ(I +m2Σ)
−1Σ

1+ y∗
iG

(i)yi

)∣∣∣∣= 1

n

∣∣∣∣y∗
iG

(i)Σ(I +m2Σ)
−1ΣGyi

1 + y∗
iG

(i)yi

∣∣∣∣
≍ 1

n

∣∣∣y∗
iG

(i)Σ(I +m2Σ)
−1ΣG(i)yi

∣∣∣≺ ξ2i
n2

∥G(i)∥F ∥G∥F ≺ ξ2i
n1+2/α

.

Consequently, we have that

z

n
|tr(R2Σ)| ≺

1

n

∑
i

ξ2i
n1+1/α

≺ n−1−1/α.

Combining all the above arguments, we find that (S.21) still holds true. Armed with all the
above controls, using an argument similar to the discussions between (S.22) and (S.23), we
can conclude the proof.

Combining the above two lemmas, we now proceed to the proof of Proposition S.2.1. We
will use a continuity argument as in [26, Lemma A.12] or [13, Section 4.1]. In fact, our
discussion is easier since the real part in the spectral domain D̃u is divergent so that the rate
is independent of η. Due to similarity, we focus on explaining the key ingredients.

Proof of Proposition S.2.1. For each z =E+iη ∈ D̃u, we fix the real part and construct a
sequence {ηj} by setting ηj = Cϑ1−jn−3. Then it is clear that η falls in an interval [ηj−1, ηj ]

for some 0≤ j ≤Cn1/α+3,C > 0 is some constant.
In Lemma S.2.3, we have proved that the results hold for η0. Now we assume (S.2) holds

for some ηj . Then according to Lemma S.2.4, we have that

|m1(zj)−m1n(zj)|+ |mQ(zj)−mn(zj)| ≺ n−1/2−2/α, |m2(zj)−m2n(zj)| ≺ n−1/2−1/α.

For any η′ lying in the interval [ηk−1, ηk], denote z′ =E + iη′ and zj =E + iηj . According
to the first resolvent identity, we have that

(S.35) ∥G(z′)−G(zj)∥⩽ n−3∥G(z′)∥∥G(zj)∥ ≺ n−11/6−1/α,

where in the second step we used the basic bound ∥G(z′)∥⩽ n2/3, (S.24), (S.27) and Gersh-
gorin circle theorem.

On the one hand, according to the definitions in (S.24), using the first resolvent identity,
we have that

m1(z
′)−m1(zj) =

1

n
tr[(G(z′)−G(zj))Σ] =

1

n4
tr(G(z′)G(zj)Σ)≺

1

n4ηj
∥G(zj)∥F ≺ n−17/6−1/α,

where in the last step we used a discussion similar to (S.30). Similarly, combining (S.35) and
(S.25), we have that

m2(z
′)−m2(zj) =

1

n

n∑
i=1

ξ2i (Gii(z
′)−Gii(zj))≺ n−11/6−1/α,

and by a discussion similar to (S.30)

|mQ(z
′)−mQ(zj)|=

1

p

∣∣tr (G(z′)−G(zj)
)∣∣⩽ n−4∥G(z′)∥F ∥G(zj)∥F

≺ n−4(n1−2/α)1/2n1/2+2/3 = n−7/3−1/α.
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On the other hand, using the definitions in (6.2), we decompose that

m1n(z
′)−m1n(zj) =

1

n

∑
i

( σi
−z′(1 + σim2n(z′))

− σi
−z′(1 + σim2n(zj))

)
+

1

n

∑
i

( σi
−z′(1 + σim2n(zj))

− σi
−zj(1 + σim2n(zj))

)
:=M11 +M12.

For M11, according to Lemma S.1.2 and (6.2), we readily obtain that

M11 =
1

n

∑
i

σ2
i

−z′(1 + σim2n(z′))(1 + σim2n(zj))

(
m2n(zj)−m2n(z

′)
)

=O(|z′|−1)× 1

n

∑
i

( ξ2i
−zj(1 + ξ2im1n(zj))

− ξ2i
−zj(1 + ξ2im1n(z′))

)
+O(|z′|−1)× 1

n

∑
i

( ξ2i
−zj(1 + ξ2im1n(z′))

− ξ2i
−z′(1 + ξ2im1n(z′))

)
=O(|z′|−1)× (M11,1 + M11,2) .

For M11,1, by a discussion similar to (S.26) and (S.27), we find that

M11,1 =
1

n

n∑
i=1

ξ4i
−zj(1 + ξ2im1n(z′))(1 + ξ2im1n(zj))

(m1n(z
′)−m1n(zj))

≺
( ξ41
−nzjd21|m1n(zj)||m1n(z′)|

+
1

n

∑
i≥2

ξ4i
|z′(1 + ξ21m1n(z′))(1 + ξ2im1n(zj))|

)
× |m1n(zj)−m1n(z

′)|

≺ o(1)× |m1n(zj)−m1n(z
′)|.

Similarly, for M11,2, we have that

M11,2 =
1

n

∑
i

ξ2i (zj − z′)

z′zj(1 + ξ2im1n(z′))
≺ z′ − zj

z′zj
≺ n−3−2/α.

Analogously, we can prove that M12 ≺ n−3−4/α. Therefore, combining the above bounds
with (S.25), we see that

|m1n(z
′)−m1n(zj)| ≺ n−3−2/α.

By similar procedures and arguments, we can also prove that

|m2n(z
′)−m2n(zj)| ≺ n−3−2/α, |mn(z

′)−mn(zj)| ≺ n−3−2/α.

and ∥∥(z′)−1(I +m1n(z
′)D2)−1 − (zj)

−1(I +m1n(zj)D
2)−1

∥∥≺ n−3−2/α.

Therefore, combining all the above bounds with triangle inequality, we see that the results
of part 1 of Theorem S.1.8 hold for z′. Using an induction procedure and a standard lattice
argument (for example, see [13, 26]), we find that the results hold for all z ∈ D̃u and conclude
the proof of Proposition S.2.1.



MULTIPLIER BOOTSTRAP MEETS HIGH-DIMENSIONAL PCA 41

S.2.1.2. Proof of Theorem S.1.8

Once Proposition S.2.1 is proved, we can roughly locate the edge eigenvalues of Q as in
Lemma S.2.2 so that we can expand the spectral domain from D̃u to Du for Q(1) and con-
clude the proof of Theorem S.1.8.

Recall the definitions of µ2 and λ
(1)
1 around (S.1) and in Figure S.3. By Lemma S.2.2

and an analogous argument, as well as Weyl’s inequality, we find that conditional on the event
Ω, with high probability,

(S.36) ϑ1 > λ1 > ϑ2 > λ
(1)
1 .

By (S.8) and a similar argument, we see that ϑk ≍ ξ2k, k = 1,2. Together with (S.25), we have
that ϑ1 − ϑ2 ≥ C1n

1/α log−1 n for some constant C1 > 0 on the event Ω. This implies for
some constant C > 0, for z ∈Du,

|λ(1)
1 − z| ≥Cn1/α log−1 n,(S.37)

Now we proceed to the proof of Theorem S.1.8. Recall (S.7) and (S.8).

Proof of Theorem S.1.8. Observe by (S.37) that it holds uniformly for z ∈Du and T ⊂
{2, . . . , n}, for some constant C1 > 0

∥G(1T )∥⩽C1n
−1/α logn.(S.38)

By the definition of m(1)
2 and a decomposition similar to (S.9), we have that

m
(1)
2 =

1

n

n∑
i=2

ξ2i
−z − zy∗

iG
(1i)yi

=
1

n

n∑
i=2

ξ2i

−z(1 + ξ2i n
−1 trG(1i)Σ+Z

(1)
i )

,

Z
(1)
i = y∗

iG
(1i)yi − ξ2i n

−1 trG(1i)Σ.

By arguments similar to (S.10) and (S.11) but with (S.38), we obtain that

Z
(1)
i ≺ ξ2i

n
∥G(1i)Σ∥F ≤ ξ2i

n
∥G(1i)∥∥Σ∥F ≺ ξ2i

n1/2
n−1/α,

1

n
tr(G(1i)Σ)−m

(1)
1 (z) =

1

n
y∗
iG

(1)ΣG(1i)yi ≺
ξ2i
n
n−2/α.

In addition, using (S.38) and a discussion similar to (S.32)–(S.34), we readily see that

m
(1)
2 =

1

n

n∑
i=2

ξ2i

−z(1 + ξ2im
(1)
1 )

+O≺(n
−1/2−1/α).

Using the decomposition

Q(1) − zI =

n∑
i=2

yiy
∗
i + zm

(1)
2 (z)Σ− z(I +m

(1)
2 (z)Σ),

by arguments similar to (S.14)–(S.21) with ∥G(1T )∥= ∥G(1T )∥ ≺ n−1/α, we conclude that

m
(1)
1 =−z−1 1

n
tr((I +m

(1)
2 (z)Σ)−1Σ)+O≺(n

−1/2−2/α)

=− 1

n

p∑
i=1

σi

z(1 +m
(1)
2 σi)

+O≺(n
−1/2−2/α).
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Combining with the definitions in (6.2), we see that

m
(1)
1 (z)−m

(1)
1n (z) =− 1

n

p∑
i=1

σi

z(1 + σim
(1)
2 (z))

+
1

n

p∑
i=1

σi

z(1 + σim
(1)
2n (z))

+O≺(n
−1/2−2/α)

=
1

n

p∑
i=1

σ2
i (m

(1)
2 (z)−m

(1)
2n (z))

z(1 + σim
(1)
2n (z))(1 + σim

(1)
2 (z))

+O≺(n
−1/2−2/α)

=
( 1
n

p∑
i=1

σ2
i

z(1 + σim
(1)
2n (z))(1 + σim

(1)
2 (z))

)( 1
n

n∑
i=2

ξ4i (m
(1)
1 (z)−m

(1)
1n (z))

z(1 + ξ2im
(1)
1 (z))(1 + ξ2im

(1)
1n (z))

)
+O≺(n

−1/2−2/α)

= o(1)(m
(1)
1 (z)−m

(1)
1n (z)) +O≺(n

−1/2−2/α),

where in the third step we used a discussion similar to (S.33) and (S.25). This completes our
proof.

S.2.2. Bounded support setting: proof of Theorem S.1.9

In this section, we will prove Theorem S.1.9. In Section S.2.2.1, we study m1n,c(z)−m1n(z)
and mn,c −mn, which is a counterpart of Lemma 4.4 of [52]. Then in Section S.2.2.2, we
study m1n(z)−m1(z) and mQ −mn, which is a counterpart of Proposition 5.1 of [52].

S.2.2.1. Control of m1n,c(z)−m1n(z) and mn,c(z)−mn(z)

Due to similarity, we focus on |m1n,c −m1n| and briefly discuss |mn,c −mn| in the end.
The proof ideas follow Lemma 4.5 of [56] or Lemma 4.4 of [52]. We focus on explaining the
parts deviates the most.

PROOF. According to the definitions of m1n,c and m1n in (6.3) and (6.2), we observe that

|m1n,c(z)−m1n(z)|

(S.39)

⩽
∣∣∣ 1
n

p∑
i=1

σi
−z + σi

∫
s

1+sm1n,c(z)
dF (s)

− 1

n

p∑
i=1

σi

−z + σi

n

∑n
j=1

ξ2j
1+ξ2jm1n,c(z)

∣∣∣

+ |m1n,c(z)−m1n(z)|
∣∣∣ 1
n

p∑
i=1

σ2
i

n

∑n
j=1

ξ4j
(1+ξ2jm1n(z))(1+ξ2jm1n,c(z))

(−z + σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

)(−z + σi

n

∑n
j=1

ξ2j
1+ξ2jm1n,c(z)

)

∣∣∣
(S.40)

:= P1 + P2.

On the one hand, for P1, we have that

P1 =
1

n

p∑
i=1

σ2
i |n−1

∑
j

ξ2j
1+ξ2jm1n,c(z)

−
∫

s
1+sm1n,c(z)

dF (s)|

|(−z + σi

n

∑n
j=1

ξ2j
1+ξ2jm1n,c(z)

)(−z + σi
∫

s
1+sm1n,c(z)

dF (s))|
.

Since z ∈D′
b ⊂Db, according to Assumption S.1.1 and the continuity of m1n,c, we conclude

that | − z + σi
∫

s
1+sm1n,c(z)

dF (s))| ⩾ c for some constant c > 0. Together with (S.27), we
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show that | − z + σi

n

∑n
j=1

ξ2j
1+ξ2jm1n,c(z)

| ⩾ c′ for some c′ > 0 when n is sufficiently large.
Using (S.27) again, we conclude that on Ω, for some small constant ϵ > 0 and some constant
C > 0

(S.41) P1 ⩽Cn−1/2+ϵ.

On the other hand, for P2, for notional convenience, we further write it as P2 =
|m1n,c(z)−m1n(z)| × |T|. For T, by Cauchy-Schwarz inequality, we have that

(S.42) |T|⩽ E1E2,

where Ek, k = 1,2, are defined as

E1 :=
( 1
n

p∑
i=1

σ2
i

n

∑n
j=1

ξ4j
(1+ξ2jm1n(z))2

| − z + σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

|2

)1/2
,

E2 :=
( 1
n

p∑
i=1

σ2
i

n

∑n
j=1

ξ4j
(1+ξ2jm1n,c(z))2

| − z + σi

n

∑n
j=1

ξ2j
1+ξ2jm1n,c(z)

|2

)1/2
.

(S.43)

Together with the identity (S.21) below and the fact m1n(z) ≍ 1 for z ∈ D′
b, we find that

E1 ⩽ 1. For the term E2, we first consider a closely related quantity W(z) defined as

W(z) :=
1

n

p∑
i=1

σ2
i

∫
s2

|1+sm1n,c(z)|2dF (s)

| − z + σi
∫

s2

(1+sm1n,c(z))2
dF (s)|2

= 1− η
|m1n,c(z)|2

Imm1n,c(z)
.

By assumption that ϕ−1 > s3, (3.6) that m1n,c(L+) =−l−1 and recall the notations in (3.5),
we see that

(S.44) W(L+)< 1.

Armed with (S.44), using (S.27) and Assumption S.1.1, we can apply an argument similar to
Lemma A.6 of [56] or Lemma A.7 of [52] to conclude that when n is sufficiently large, for
z ∈Db,

(S.45) E2
2 =W(L+) + o(1)< c′,

for some constant 0< c′ < 1.
Consequently, we find that when n is sufficiently large, E2 < 1. Together with (S.42), we

can conclude that |T|< 1. This yields that

P2 = c|m1n,c −m1n|,

for some constant 0< c< 1.
Inserting the above control back into (S.39), using (S.41), we can conclude our proof

that

(S.46) m1n,c =m1n(z) +O(n−1/2+ϵ).

The proof of mn,c−mn follows from an argument similar to (S.39) using (6.2) and (6.3) that

mn(z) =
1

p

p∑
i=1

1

−z + σin−1
∑n

j=1
ξ2j

1+ξ2jm1n

, mn,c(z) =
1

p

p∑
i=1

1

−z + σi
∫ l
0

s
1+sm1n,c(z)

dF (s)
,

the results of m1n,c −m1n and (S.27). We omit the details.
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S.2.2.2. Control of m1n(z)−m1(z) and mn(z)−mQ(z)

Due to similarity, we focus on |m1n,c−m1n| and will briefly discuss how to study |mQ−mn|
from line to line. The proof ideas follow Proposition 5.1 of [56] or Proposition 5.1 of [52].
We focus on explaining the parts deviates the most. The proof relies on the following two
lemmas.

LEMMA S.2.5. Conditional on the event Ω in Theorem S.1.9, for all z = E + iη ∈D′
b

with n−1/2+ϵd ≤ η ≤ n−1/(d+1)+ϵd , we have

|m1n(z)−m1(z)| ≺
1

nη0
, |mn(z)−mQ(z)| ≺

1

nη0
.

LEMMA S.2.6. Assuming that |m1n(z)−m1(z)| ≺ nϵd(nη0)
−1, then conditional on the

event Ω, we have that for all z ∈D′
b

|m1n(z)−m1(z)| ≺
1

nη0
, |mn(z)−mQ(z)| ≺

1

nη0
.

Armed with the above two lemmas, we now proceed to the control of m1n(z)−m1(z).

Proof: control of m1n(z)−m1(z) and mn(z)−mQ(z). Due to similarity, we only
prove m1n(z) − m1(z). We prove this by mathematical induction as that of Proposition
5.1 of [56]. Fix E such that z = E + iη0 ∈ D′

b, we consider a sequence (ηj) defined by
ηj = η0 + jn−2. Let K be the smallest positive integer such that ηK ≥ n−1/2+ϵd . Note that
for j =K , by Lemma S.2.5, we have that

|m1n(zj)−m1(zj)| ≺
1

nη0
.

Then for any z =E + iη with ηj−1 ≤ η ≤ ηj , we have that for some constant C > 0

|m1(zj)−m(z)|= 1

n
tr [(G(zj)−G(z))Σ] =

|zj − z|
n

tr(G(zj)G(z)Σ)≤C
|zj − z|
η2j−1

≤C
n2ϵd

n
,

where we used the first resolvent identity and the trivial bound |G(z)|⩽ η−1, and similarly

|m1n(zj)−m1n(z)|=
∣∣∣∣∫ [ 1

x− zj
− 1

x− z

]
ρ(x)dx

∣∣∣∣≤ |zj − z|
η2j−1

≤ n2ϵd

n
.

Thus we find that if |m1n(zj) − m1(zj)| ≺ 1
nη0

, then by Lemma S.2.6, for some constant
C ′ > 0

|m1n(z)−m1(z)| ≤ |m1n(zj)−m1(zj)|+
C ′n2ϵd

n
≺ nϵd

nη0
.(S.47)

This gives the result that |m1n(z)−m1(z)| ≺ (nη0)
−1 for z = E + iη with ηj−1 ≤ η ≤ ηj .

The proof for each z can be completed by an induction on j. Finally, using an induction
procedure and a standard lattice argument (for example, see [13, 26]), we find that the results
hold for all z ∈D′

b. More specifically, we construct a lattice L from z′ =E′ + iη0 ∈D′
b with

|z − z′| ≤ n−3. It is obvious that the bound holds uniformly on L. For any z =E + iη0 /∈ L,
we find a z′ ∈ L and then |z−z′| ≤ n−3. Moreover, using resolvent identity, we can conclude
that |m1(z)−m1(z

′)| ≤ η−2
0 |z − z′| ≪ (nη0)

−1. Therefore, we conclude the proof.
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In what follows, we prove lemmas S.2.5 and S.2.6. The proofs are similar to those of
Lemmas 5.6 and 5.7 of [56], except that we will need a weak local law as follows.

PROPOSITION S.2.7 (Weak averaged local law). Suppose the assumptions of Theorem
S.1.9 hold. We have that for z ∈D′

b

|mQ(z)−mn(z)|+ |m1(z)−m1n(z)|+ |m2(z)−m2n(z)|=O≺

(
(nη)−1/4

)
.

PROOF. The proof of Proposition S.2.7 is relatively standard in the random matrix liter-
ature, for example, see Section 4.1 of [13] or Section 3.6 of [35] or Appendix A.2 of [26]
or Section 5.2 of [71]. Due to similarity, as in Lemma 5.12 of [71], we only provide the key
ingredients. Define the z-dependent parameter

Ψ(z) :=

√
Imm1(z)

nη
+

1

nη
.(S.48)

Recall (S.9). By Lemma S.1.15 and (S.28), we find that

Zi ≺
ξ2i
n
∥G(i)Σ1/2∥F ⩽ l

√
Imm

(i)
1 (z)

nη
≍Ψ,(S.49)

where in the last step we used (S.29). Together with (S.29) and the first equation of (S.9), we
conclude that

m2 =
1

n

n∑
i=1

ξ2i
−z(1 + ξ2im1(z) +O≺(Ψ))

.(S.50)

For m1(z), recall (S.14). According to the definition of m1(z) in (S.24), we have that

m1(z) =
1

n
tr(G(z)Σ) =− 1

n

p∑
i=1

σi
z(1 +m2(z)σi)

+
1

n
tr(R1Σ)+

1

n
tr(R2Σ).(S.51)

Similarly, for mQ(z) in (6.1), we have that

(S.52) mQ(z) =
1

p
tr(G(z)) =−1

p

p∑
i=1

1

z(1 +m2(z)σi)
+

1

p
tr(R1) +

1

p
tr(R2).

On the one hand, when η ≍ 1, by a discussion similar to (5.45) of [71] , we find that
∥(I +m

(i)
2 Σ)−1∥<∞. Then using (S.49), by a discussion similar to the equations between

(S.15) and (S.21), we find that

m1(z) =− 1

n

p∑
i=1

σi
z(1 +m2(z)σi)

+O≺

( 1
n

∑
i

ξ2iΨ

z(1 + ξ2im1(z) +O≺(Ψ))

)
.(S.53)

Similarly, we have

mQ(z) =−1

p

p∑
i=1

1

z(1 +m2(z)σi)
+O≺

(1
p

∑
i

ξ2iΨ

z(1 + ξ2im1(z) +O≺(Ψ))

)
.

On the other hand, denote Ξ := {|Gij(z) + δij(z(1 + m1n(z)ξ
2
i ))

−1| + |m2(z) −
m2n(z)| ⩽ (logn)−1}. When restricted on Ξ, by Assumption S.1.1, we also have that
∥(I +m

(i)
2 Σ)−1∥ <∞. By an analogous argument, we find that (S.53) also holds true. By
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an argument similar to (S.29) using Lemma S.1.13, we have that for i ̸= j, 1(η ⩾ 1)Gij ≺
Ψ, 1(Ξ)Gij ≺Ψ.

The above arguments show that the counterparts of Lemmas 5.9 and 5.10 of [71] hold.
Therefore, by the same arguments as in Lemma 5.12 of [71], we can conclude the proof.

Next we provide some useful controls whose proofs and results will be used in the proof of
Lemmas S.2.5 and S.2.6. The results and arguments are analogous to Lemma 5.4 of [56]. We
only point out the key ingredients in our proof and refer the readers to [56] for more details.

LEMMA S.2.8. Suppose the assumptions of Theorem S.1.9 hold. Then we have that on Ω
and for all z =E + iη0 ∈D′

b

Imm1(z)≺
1

nη0
, ImmQ(z)≺

1

nη0
.

PROOF. Due to similarity, we focus our proof on ImmQ(z). We prove by contradiction.
Given some ϵ > 0, conditional on Ω, for some sufficiently small constants 0< c1, c2 < 1, we
first introduce a probability event Ξ1 ≡ Ξ1(ϵ) so that the followings holds:

1. For z ∈D′
b,

|mQ(z)−mn(z)|+ |m1(z)−m1n(z)|+ |m2(z)−m2n(z)|⩽ (nη)−1/4+c1ϵ.

2. For z ∈D′
b and Zi in (S.9),

max
i

Zi ⩽ nc2ϵΨ.

According to Proposition S.2.7 and (S.49), we find that there exists some large constant
D > 0 so that P(Ξ1) = 1 − n−D. In what follows, we restrict ourselves on Ξ1 so that the
discussions are purely deterministic.

Assuming that

Imm1(z)> nϵ 1

nη0
.

We then conclude from the definition of Ψ in (S.48) that

(S.54) Ψ= o(Imm1(z)).

Moreover, by (S.19) and (S.20), we readily see that Imm1n(z) ≪ Imm1(z). This implies
that for some constant C > 0

|m1n(z)−m1(z)| ≥ | Imm1n − Imm1|>Cnϵ 1

nη0
.(S.55)

On the other hand, by Proposition S.2.7 and Assumption S.1.1, we see that (S.53) still
holds. Together with m1n in (6.2), using (S.9), we find that

m1n −m1 =
1

n

p∑
i=1

σ2
i

n

∑
j

ξ4j (m1n−m1)+ξ2jO(nc2ϵΨ)

(1+ξ2jm1n)(1+ξ2jm1+O(nc2ϵΨ))

(z − σi

n

∑
j

ξ2j
1+ξ2jm1n

)(z − σi

n

∑
j

ξ2j
1+ξ2jm1+O(nc2ϵΨ))

+O(nc2ϵΨ)

= C1(m1n −m1) + C2 +O(nc2ϵΨ),(S.56)
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where C1,C2 are defined as

C1 :=
1

n

p∑
i=1

σ2
i

n

∑
j

ξ4j
(1+ξ2jm1n)(1+ξ2jm1+O(nc2ϵΨ))

(z − σi

n

∑
j

ξ2j
1+ξ2jm1n

)(z − σi

n

∑
j

ξ2j
1+ξ2jm1+O(nc2ϵΨ))

,

C2 :=
1

n

p∑
i=1

σ2
i

n

∑
j

ξ2jO(nc2ϵΨ)

(1+ξ2jm1n)(1+ξ2jm1+O(nc2ϵΨ))

(z − σi

n

∑
j

ξ2j
1+ξ2jm1n

)(z − σi

n

∑
j

ξ2j
1+ξ2jm1+O(nc2ϵΨ))

.

We first control C2. It is easy to see that m1 ∼ 1 by contradiction. If m1 ≪ 1, one can observe
from (S.50) that m2 ∼ 1 which yields m1 ≍ 1 by (S.53). If m1 ≫ 1, we have m2 ≪ 1 from
(S.50), and then it gives that m1 ≍ 1 by (S.53). Similarly, we can show that m2 ≍ 1. Together
with Proposition S.2.7, we find that m1n,m2n ≍ 1. Since z ≍ 1, using the definition of m2n

in (6.2) and Proposition S.2.7, we find that

1

n

∑
j

ξ2jO(nc2ϵΨ)

(1 + ξ2jm1n)(1 + ξ2jm1 +O(nc2ϵΨ))
=O(nc2ϵΨ).

Moreover, by Proposition S.2.7, (S.46) and Assumption S.1.1, we find that

1

n

∑
i

1

(z − σi

n

∑
j

ξ2j
1+ξ2jm1n

)(z − σi

n

∑
j

ξ2j
1+ξ2jm1+O(nc2ϵΨ))

≍ 1.

This yields that

(S.57) C2 =O(nc2ϵΨ).

For C1, using Proposition S.2.7 and Assumption S.1.1, by an argument similar to (S.42),
we can conclude that when n is sufficiently large, for some constant 0< c< 1,

(S.58) C1 ⩽ c.

Combining (S.56), (S.57) and (S.58), we conclude that

|m1n −m1|=O(nc2ϵΨ),

which contradicts (S.55) since c2 < 1 is sufficiently small. This completes our proof for each
fixed z. For uniformity in z, we can follow a standard lattice argument as discussed below
(S.47). This finishes the proof. The discussion for mQ follows from an analogous discussion
with the help of (S.50) and (S.53).

REMARK S.2.9. Two remarks are in order. First, it is easy to see that repeating the proof
of Lemma S.2.8, we can prove the results for all η as specified in (S.6). Second, we remark
that combining (S.49) and Lemma S.2.8, when z = E + iη0 ∈D′

b, we have that conditional
on Ω

Zi ≺
1

nη0
.

Armed with the above discussions and results, following the strategies of Lemmas 5.6 and
5.7 of [56] or [52], we prove Lemmas S.2.5 and S.2.6 using similar arguments as in Lemma
S.2.8. Due to similarity, we only provide the key ingredients.
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Proof of Lemmas S.2.5 and S.2.6. Due to similarity, we focus our proof on Lemma S.2.5
and briefly mention that of Lemma S.2.6 in the end. Due to similarity, we only explain
|m1n(z)−m1(z)|.

The proof is similar to that of Lemma S.2.8 and we prove by contradiction. We also
restrict ourselves on the event Ξ1 in Lemma S.2.8. We assume that |m1n(z) − m1(z)| >
nϵ(nη0)

−1. To see a contraction, in addition to the the arguments of Lemma S.2.8, we need
to provide a finer control for Ψ since in the current proof it depends on η instead of η0. Note
that

nc2ϵΨ= nc2ϵ

√
| Imm1 − Imm1n + Imm1n|

nη
+ nc2ϵ 1

nη

≤ nc2ϵ

√
| Imm1 − Imm1n|

nη
+ nc2ϵ

√
Imm1n

nη
+ nc2ϵ 1

nη

= o(|m1 −m1n|),

(S.59)

where in the last step we used (S.18) and the assumption |m1n(z)−m1(z)|> nϵ(nη0)
−1 ≫

(nη)−1 when n−1/2+ϵd ⩽ η ⩽ n−1/(d+1)+ϵd . Replacing nc2ϵΨ with o(|m1 − m1n|) in the
arguments between (S.56) and (S.58), we find that |m1n −m1| = o(|m1n −m1|) which is
a contraction. This proves the result for each fixed z. The uniformity follows from the same
lattice argument as mentioned in the end of the proof of Lemma S.2.8.

The proof of Lemma S.2.6 is similar. We also prove by contradiction and assume that
nϵ(nη0)

−1 < |m1(z) − m1n(z)| ≤ nϵ+ϵd(nη0)
−1. Under this assumption, together with

(S.19) and (S.20), we find that (S.59) still holds true. The rest of the arguments are simi-
lar and we omit the details.

APPENDIX S.3: LOCATIONS FOR EXTREME BOOTSTRAPPED EIGENVALUES
AND PROOF OF THE MAIN RESULTS

In this section, we study the first order convergent limits of the largest eigenvalues of Q,
i.e., λ1(Q). In Section S.3.1, we investigate the case when {ξ2i } have unbounded support as
in (i) of Assumption 2.2. In Section S.3.2, we study the bounded support case as in (ii) of
Assumption 2.2.

S.3.1. The unbounded support case

In order to quantify the location of λ1 ≡ λ1(Q), we need to introduce several auxiliary quan-
tities. Recall ϑ1 defined in (6.5). Similarly, we denote ϑ2 by replacing ξ2(1) with ξ2(2) in (6.5).
Moreover, for d1 and the sufficiently small constant ϵ > 0 in (S.4), we denote

(S.1) ϑ±
1 := ϑ1 ± n−1/2+2ϵd1,

and recall that

(S.2) Q(1) :=Q− y(1)y
∗
(1),

where y(1) is the column of Y in (2.1) associated with ξ2(1). Accordingly, we denote the largest

eigenvalue of Q(1) as λ(1)
1 ≡ λ1(Q

(1)). Throughout this section, we shall prove Figure S.3 so
that the location of λ1 can be quantified with high probability on the event Ω.

More formally, the main result is summarized in Proposition S.3.1 below.
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λ2 λ
(1)
1

ϑ2 ϑ−1
ϑ1 ϑ+1

λ1 is here

FIG S.3. Location of the largest eigenvalue of Q.

PROPOSITION S.3.1. Suppose Assumptions 2.1, 2.4 and (i) of Assumption 2.2 hold. For
some sufficiently small constant ϵ > 0 and ϑ±

1 defined in (S.1), condition on the probability
event Ω in Lemma S.1.12, with high probability, we have that

λ1 ∈ [ϑ−
1 , ϑ

+
1 ].

We now proceed to the proof of Proposition S.3.1 following the structure described in Figure
S.3.

Proof of Proposition S.3.1. In what follows, we restrict the discussion on the probability
event Ω in Lemma S.1.12. By Weyl’s inequality, we have that λ2 ⩽ λ

(1)
1 . Moreover, by (S.36),

we see that with high probability λ
(1)
1 < ϑ2. The rest of the proof leaves to prove that the

following two claims:

(S.3) ϑ1 − ϑ2 ⩾ n1/α log−1 n,

and for Q(1) in (S.2) and

(S.4) M(λ) = 1+ y∗
(1)G

(1)
1 (λ)y(1), G

(1)
1 (λ) := (Q(1) − λI)−1,

M(λ) changes sign with high probability at ϑ−
1 and ϑ+

1 . In fact, for λ1, it should satisfy the
following equation with high probability

(S.5) det(λ1I − y(1)y
∗
(1) −Q(1)) = 0⇒M(λ1) = 0,

as long as λ1 > λ
(1)
1 . On the other hand, if M(λ) changes sign at ϑ±

1 , by continuity, there
must at least be an eigenvalue of Q in the interval [ϑ−

1 , ϑ
+
1 ]. If (S.3) holds, combining the

above arguments, we see that the only possibility is λ1 and it is also true that λ1 > λ
(1)
1 .

We first justify (S.3). Recall that ϑ1 is defined in (6.5) according to

1 + (ξ2(1) + d1)m1n(ϑ1) = 0.

Together with (S.2) and (S.3), we readily obtain that

(S.6) 1 =
1

n

p∑
i=1

σi
ϑ1

ξ2(1)+d1
− σi

n

∑n
j=1

ξ2(j)
ξ2(1)+d1−ξ2(j)

.

Recall (S.9). Using the definition of d1 and (S.25), we see that on Ω, for some constant C > 0

1

n

n∑
j=1

ξ2(j)

ξ2(1) + d1 − ξ2(j)
=

1

n

ξ2(1)

d1
+

1

n

n∑
j=2

ξ2(j)

ξ2(1) + d1 − ξ2(j)

≤ Cnϵ logn

n
+

1

n

n∑
j=2

ξ2(j)

ξ2(1) + d1 − ξ2(2)

≤ Cnϵ logn

n
+

C logn

n1/α
=Ce.

(S.7)
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Recall the definition of φ in Theorem 3.1, the above arguments imply that on Ω

(S.8)
ϑ1

ξ2(1) + d1
= φ+O(e).

Moreover, after some calculation from (S.6), one has

ϑ1

ξ2(1) + d1
−φ=

ξ2(1) + d1

ϑ1
× 1

n

n∑
i=1

σ2
i ×

1

n

n∑
j=2

ξ2(j)

ξ2(1) − ξ2(j)
+O(e2).

Then by Assumption 2.2, we can obtain that

1

n

n∑
j=2

ξ2(j)

ξ2(2) − ξ2(j)
=

Eξ2

ξ2(1)
+O(e2).

Therefore, we conclude a enhanced form for (S.8) that

(S.9) ϑ1 = φ× (ξ2(1) + d1) +Eξ2 × 1

nφ

n∑
i=1

σ2
i +O(e).

By an analogous argument, we have that for some constants Ck > 0, k = 1,2,3,

1

n

( n∑
j=1

ξ2(j)

ξ2(1) + d1 − ξ2(j)
−

n∑
j=2

ξ2(j)

ξ2(2) + d1 − ξ2(j)

)

=
1

n

(ξ2(1)
d1

+

n∑
j=2

ξ2(j)

ξ2(1) + d1 − ξ2(j)
−

n∑
j=2

ξ2(j)

ξ2(2) + d1 − ξ2(j)

)

=C1e−
1

n

n∑
j=2

ξ2(j)(ξ
2
(1) − ξ2(2))

(ξ2(1) + d1 − ξ2(j))(ξ
2
(2) + d1 − ξ2(j))

≥C1e−
1

n

n∑
j=2

ξ2(j)

ξ2(2) + d1 − ξ2(j)

⩾C2e,

and on the other hand

1

n

( n∑
j=1

ξ2(j)

ξ2(1) + d1 − ξ2(j)
−

n∑
j=2

ξ2(j)

ξ2(2) + d1 − ξ2(j)

)

≤ 1

n

(ξ2(1)
d1

+
∑
j=2

ξ2(j)

ξ2(1) + d1 − ξ2(j)
+
∑
j=2

ξ2(j)

ξ2(2) + d1 − ξ2(j)

)
⩽C3e.

Using the above control, the definition of ϑ2 and a discussion similar to (S.8), we can prove
that

(S.10)
ϑ2

ξ2(2) + d1
= ϕσ̄+O(e).

Combining (S.8) and (S.10), we immediately see that

(S.11)
ϑ1

ξ2(1) + d1
− ϑ2

ξ2(2) + d1
=O(e).
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This implies that

ϑ1 − ϑ2 = (ξ2(1) + d1)
( ϑ1

ξ2(1) + d1
− ϑ2

ξ2(2) + d1

)
+ ϑ2

(ξ2(1) + d1

ξ2(2) + d1
− 1
)

= (ξ2(1) + d1)
( ϑ1

ξ2(1) + d1
− ϑ2

ξ2(2) + d1

)
+

ϑ2

ξ2(2) + d1
(ξ2(1) − ξ2(2))

≥ n2/α log−1 n,

where in the third step we used (S.11), (S.25) and the definition of e2 in (S.9). This completes
the proof of (S.3).

Next, we will show that

M(ϑ−
1 )< 0, M(ϑ+

1 )> 0.

Due to similarity, in what follows, we focus on the first inequality. Note that

y∗
1G

(1)
1 (ϑ−

1 )y1 = ξ2(1)u
∗
1Σ

1/2G
(1)
1 (ϑ−

1 )Σ
1/2u1.

Moreover, recall that m(1)
1 (ϑ−

1 ) = n−1 tr(Σ1/2G
(1)
1 (ϑ−

1 )Σ
1/2). Then according to Lemma

S.1.15, we have that

y∗
1G

(1)
1 (ϑ−

1 )y1 = ξ2(1)m
(1)
1 (ϑ−

1 ) +O≺

(ξ2(1)
n

∥G(1)
1 (ϑ−

1 )∥F
)

= ξ2(1)m
(1)
1 (ϑ−

1 ) +O≺

( ξ2(1)

n1/2+1/α

)
,(S.12)

where in the second step we used (S.3) and the fact ϑ2 > λ
(1)
1 . Moreover, for some sufficiently

small constant ϵ0 > 0 and z0 = ϑ−
1 + in−1/2−ϵ0 , we can decompose that

m
(1)
1 (ϑ−

1 ) =
[
m

(1)
1 (ϑ−

1 )−m
(1)
1 (z0)

]
+
[
m

(1)
1 (z0)−m

(1)
1n (z0)

]
+
[
m

(1)
1n (z0)−m

(1)
1n (ϑ

−
1 )
]
+m

(1)
1n (ϑ

−
1 )

= P1 + P2 + P3 +m
(1)
1n (ϑ

−
1 ).

(S.13)

First, by Theorem S.1.8, we have that P2 ≺ n−1/2−2/α. Second, let {v(1)
i } be the eigenvectors

of Q(1) associated with the eigenvalues {λ(1)
i }, then we have that

|P1| ≤
1

n

p∑
i=1

|Tv(1)
i |2

∣∣∣∣∣ 1

λ
(1)
i − ϑ−

1

− 1

λ
(1)
i − z0

∣∣∣∣∣
=

1

n

p∑
i=1

|Tv(1)
i |2

∣∣∣∣∣ in−1/2−ϵ0

(λ
(1)
i − ϑ−

1 )(λ
(1)
i − z0)

∣∣∣∣∣
≤ 1

n

p∑
i=1

|Tv(1)
i |2

∣∣∣ in−1/2−ϵ0 +O≺(n
−2/α−1/2 log2 n)

|λ(1)
i − z0|2

∣∣∣
≺ Im(m

(1)
1 (z0))×O≺(n

−1/2−ϵ0)≺ n−1−1/α,



52

where in the third step we used (S.3) and the fact ϑ2 > λ
(1)
1 and in the last step we used

Lemma S.1.2, (S.8) and (S.25). Third, according to Lemma 6.2, we can decompose that

P3 =
1

n

p∑
i=1

σi

−z0(1 +
σi

n

∑n
j=2

ξ2(j)

−z0(1+m
(1)
1n (z0)ξ2(j))

)
− 1

n

p∑
i=1

σi

−ϑ−
1 (1 +

σi

n

∑n
j=2

ξ2(j)

−ϑ−
1 (1+m

(1)
1n (ϑ−

1 )ξ2(j))
)

=
[ 1
n

p∑
i=1

σi

−z0(1 +
σi

n

∑n
j=2

ξ2(j)

−z0(1+m
(1)
1n (z0)ξ2(j))

)
− 1

n

p∑
i=1

σi

−z0(1 +
σi

n

∑n
j=2

ξ2(j)

−ϑ−
1 (1+m

(1)
1n (ϑ−

1 )ξ2(j))
)

]

+
[ 1
n

p∑
i=1

σi

−z0(1 +
σi

n

∑n
j=2

ξ2(j)

−ϑ−
1 (1+m

(1)
1n (ϑ−

1 )ξ2(j))
)
− 1

n

p∑
i=1

σi

−ϑ−
1 (1 +

σi

n

∑n
j=2

ξ2(j)

−ϑ−
1 (1+m

(1)
1n (ϑ−

1 )ξ2(j))
)

]
:=M(1)

31 +M(1)
32 .

Note that according to (S.8), (S.3), (S.25) and Lemma S.1.2, we conclude that with high
probability |1 + σim

(1)
2n (z0)|, |1 + σim

(1)
2n (ϑ

−
1 )| ∼ 1. For M(1)

31 , using the definitions in (6.2)
and the above bounds, we have that with high probability

M(1)
31 =

1

n

p∑
i=1

σ2
i

−z0(1 + σim
(1)
2n (z))(1 + σim

(1)
2n (ϑ

−
1 ))

(
m

(1)
2n (ϑ

−
1 )−m

(1)
2n (z)

)
=O(|z0|−1)× 1

n

n∑
j=2

( ξ2(j)

−ϑ−
1 (1 + ξ2(j)m

(1)
1n (ϑ

−
1 ))

−
ξ2(j)

−z(1 + ξ2(j)m
(1)
1n (z0))

)

=O(|z0|−1)× 1

n

n∑
j=2

( ξ2(j)

−ϑ−
1 (1 + ξ2(j)m

(1)
1n (ϑ

−
1 ))

−
ξ2(j)

−ϑ−
1 (1 + ξ2(j)m

(1)
1n (z0))

)

+O(|z0|−1)× 1

n

n∑
j=2

( ξ2(j)

−ϑ−
1 (1 + ξ2(j)m

(1)
1n (z))

−
ξ2(j)

−z(1 + ξ2(j)m
(1)
1n (z0))

)

=O(|z0|−1)× 1

n

n∑
j=2

ξ4(j)(m
(1)
1n (z0)−m

(1)
1n (ϑ

−
1 ))

−ϑ−
1 (1 + ξ2(j)m

(1)
1n (ϑ

−
1 ))(1 + ξ2(j)m

(1)
1n (z0))

+O(|z0|−1)× 1

n

n∑
j=2

ξ2(j)(ϑ
−
1 − z0)

zϑ−
1 (1 + ξ2(j)m

(1)
1n (z0))

= o(1)× (m
(1)
1n (z0)−m

(1)
1n (ϑ

−
1 )) +O(n−2/α−1/2−ϵ0).

(S.14)

where in the second to last step we used Lemma S.1.2 and in the last step we used Lemma
S.1.2 and (S.25). This implies with high probability

M(1)
31 =O

(
n−2/α−1/2−ϵ0

)
.

Similarly, for M(1)
32 , we have that

M(1)
32 =

1

n

p∑
i=1

σi(z0 − ϑ−
1 )

z0ϑ
−
1 (1 + σim

(1)
2n (ϑ

−
1 ))

= O(n−2/α−1/2−ϵ0).

(S.15)

Combining the above arguments, we have that P3 =O
(
n−2/α−1/2−ϵ0

)
.
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Inserting the bounds of Pk,1⩽ k ⩽ 3 into (S.13), we conclude that

|m(1)
1 (ϑ−

1 )−m
(1)
1n (ϑ

−
1 )| ≺ n−1/α−1/2−ϵ0 .

Together with (S.12) and (S.25), it yields that

(S.16) M(ϑ−
1 ) = 1+ (ξ2(1) + d1)m

(1)
1n (ϑ

−
1 ) +O≺(n

−1/2−ϵ0).

In what follows, we study 1 + (ξ2(1) + d1)m
(1)
1n (ϑ

−
1 ). We rewrite that

1 + (ξ2(1) + d1)m
(1)
1n (ϑ

−
1 ) = 1+ (ξ2(1) + d1)m

(1)
1n (ϑ1)− (ξ2(1) + d1)

(
m

(1)
1n (ϑ1)−m

(1)
1n (ϑ

−
1 )
)
.

(S.17)

Using the definition for ϑ1 that 1+ (ξ2(1) + d1)m1n(ϑ1) = 0 and the definitions in (6.2), by a
discussion similar to (S.14), we have that for some constant C > 0

1 + (ξ2(1) + d1)m
(1)
1n (ϑ1)

= 1+ (ξ2(1) + d1)m1n(ϑ1) + (ξ2(1) + d1)
(
m

(1)
1n (ϑ1)−m1n(ϑ1)

)
= (ξ2(1) + d1)

1

n

p∑
i=1

( σi

−ϑ1(1 + σim
(1)
2n (ϑ1))

− σi
−ϑ1(1 + σim2n(ϑ1))

)

= (ξ2(1) + d1)

[
1

n

p∑
i=1

σ2
i

−ϑ1(1 + σim
(1)
2n (ϑ1))(1 + σim2n(ϑ1))

](
m2n(ϑ1)−m

(1)
2n (ϑ1)

)
⩽C

(ξ2(1) + d1)

ϑ1
×
∣∣∣ 1
n

n∑
j=1

ξ2(j)

−ϑ1(1 + ξ2(j)m1n(ϑ1))
− 1

n

n∑
j=2

ξ2(j)

−ϑ1(1 + ξ2(j)m
(1)
1n (ϑ1))

∣∣∣
⩽C

(ξ2(1) + d1)

ϑ1
× ξ2(2)|m

(1)
1n (ϑ1)−m1n(ϑ1)|+ n−1.

(S.18)

where in the last step we again used (S.25). This yields that

|(ξ2(1) + d1)
(
m

(1)
1n (ϑ1)−m1n(ϑ1)

)
|⩽C

(ξ2(1) + d1)

ϑ1
× ξ2(2)|m

(1)
1n (ϑ1)−m1n(ϑ1)|+ n−1,

which implies that (ξ2(1) + d1)
(
m

(1)
1n (ϑ1) −m1n(ϑ1)

)
= O(n−1). Together with (S.17), we

have

(S.19) 1 + (ξ2(1) + d1)m
(1)
1n (ϑ

−
1 ) =−(ξ2(1) + d1)

(
m

(1)
1n (ϑ1)−m

(1)
1n (ϑ

−
1 )
)
+O(n−1).

Recall that we have proved the facts that ϑ1, ϑ
−
1 > λ

(1)
1 , by Theorem S.1.9 and the mono-

tonicity of m(1)
1 outside the bulk, the first term on the right-hand side of (S.19) is negative. In

order to show M(ϑ−
1 )< 0, in light of (S.16), it suffices to show that its magnitude is much
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larger than O(n−1/2−ϵ0). To see this, we decompose that

m
(1)
1n (ϑ1)−m

(1)
1n (ϑ

−
1 )

=
1

n

p∑
i=1

σi

−ϑ1(1 + σim
(1)
2n (ϑ1))

− 1

n

p∑
i=1

σi

−ϑ−
1 (1 + σim

(1)
2n (ϑ

−
1 ))

=
[ 1
n

p∑
i=1

σi

−ϑ1(1 +
σi

n

∑n
j=2

ξ2(j)

−ϑ1(1+ξ2(j)m
(1)
1n (ϑ1)

)
− 1

n

p∑
i=1

σi

−ϑ1(1 +
σi

n

∑n
j=2

ξ2(j)

−ϑ1(1+ξ2(j)m
(1)
1n (ϑ−

1 ))
)

]

+
[ 1
n

p∑
i=1

σi

−ϑ1(1 +
σi

n

∑n
j=2

ξ2(j)

−ϑ1(1+ξ2(j)m
(1)
1n (ϑ−

1 ))
)
− 1

n

p∑
i=1

σi

−ϑ−
1 (1 +

σi

n

∑n
j=2

ξ2(j)

−ϑ−
1 (1+ξ2(j)m

(1)
1n (ϑ−

1 ))
)

]

:= M̃(1)
11 + M̃(1)

12 .

Similar to the discussion of (S.14), we have that M̃(1)
11 ,

M̃(1)
11 =

1

n

p∑
i=1

σ2
i

(
1
n

∑n
j=2

ξ2(j)

−ϑ1(1+ξ2(j)m
(1)
1n (λ))

− 1
n

∑n
j=2

ξ2(j)

−ϑ1(1+ξ2(j)m
(1)
1n (ϑ1))

)
−ϑ1(1 +

σi

n

∑n
j=2

ξ2(j)

−ϑ1(1+ξ2(j)m
(1)
1n (ϑ1))

)(1 + σi

n

∑n
j=2

ξ2(j)

−ϑ1(1+ξ2(j)m
(1)
1n (ϑ−

1 ))
)

= O(
1

ϑ1
)× 1

n

n∑
j=2

ξ4(j)(m
(1)
1n (ϑ1)−m

(1)
1n (ϑ

−
1 ))

−ϑ1(1 + ξ2(j)m
(1)
1n (ϑ

−
1 ))(1 + ξ2(j)m

(1)
1n (ϑ1))

= o(1)× (m
(1)
1n (ϑ1)−m

(1)
1n (ϑ

−
1 )).

Moreover, similar to (S.15), for M̃(1)
12 we have that with high probability

M̃(1)
12 =

1

n

p∑
i=1

σi(ϑ1 − ϑ−
1 )

ϑ1ϑ
−
1 (1 +

σi

n

∑n
j=2

ξ2(j)

−ϑ1(1+ξ2(j)m
(1)
1n (ϑ−

1 ))
)(1 + σi

n

∑n
j=2

ξ2(j)

−ϑ−
1 (1+ξ2(j)m

(1)
1n (ϑ−

1 ))
)

≍ ϑ1 − ϑ−
1

ϑ−
1 ϑ1

≍ n−1/2−1/α+ϵ.

This implies that

m
(1)
1n (ϑ1)−m

(1)
1n (λ)≍ n−1/2−1/α+ϵ.

Together with (S.19), the definition of d2 and (S.25), we readily see that

(S.20) 1 + (ξ2(1) + d2)m
(1)
1n (ϑ

−
1 )≍−n−1/2+ϵ,

which concludes the proof of M(ϑ−
1 ) < 0 when n is sufficiently large. Similarly, we can

prove that M(ϑ+
1 )> 0. This completes the proof.

S.3.2. The bounded support case

In this section, we study the first order convergence of λ1 under the assumptions of part (1) of
Theorem 3.3. The other parts will be discussed in Section S.4. The main result of this section
can be summarized in the following proposition.
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PROPOSITION S.3.2. Suppose the assumptions of part (1) of Theorem 3.3 hold, then
conditional on the probability event as in Lemma S.1.5, we have that∣∣∣∣∣λ1 −

(
L̂+ − 1− ϕŝ3

ŝ4

l− ξ2(1)

lξ2(1)

)∣∣∣∣∣=OP

[
1

n1/(d+1)

(
n3ϵd

n−1/(d+1)+1/2
+

logn

n1/(d+1)

)]
.

The proof of Proposition S.3.2 relies crucially on the following lemma whose justification
will be provided in the end of this section.

LEMMA S.3.3. Suppose the assumptions of Proposition S.3.2 hold. Recall E0 defined in
(6.7). Conditional on the probability event Ω as in Lemma S.1.5, we have that

(S.21) λ1 =E0 +OP

(
n−1/2+3ϵd

)
,

and

Rem1n(λ1 + iη0) =− 1

ξ2(1)
+OP(n

−1/2+3ϵd).(S.22)

Armed with Lemma S.3.3, we proceed to the proof of Proposition S.3.2.

Proof of Proposition S.3.2. Recall (S.13), we have that conditional on Ω, m1n(L̂+) =
−l−1. Together with (S.16), we conclude that

Rem1n(L̂+ + in−1/2−ϵd) =−l−1 +O(n−1/2−ϵd).

Moreover, according to the definition in (6.7), we have that

Rem1n(E0 + in−1/2−ϵd) =−ξ2(1).

By (S.27), we obtain that conditional on Ω

Rem1n(L̂+ + in−1/2−ϵd) = Rem1n(E0 + in−1/2−ϵd) +O

(
logn

nd+1

)
,

which implies that L̂+ = E0 + O(logn/nd+1). Let Ξ be the probability event that (S.21)
holds. We therefore conclude from (S.15) that when restricted on Ξ and n is sufficiently
large, λ1 + iη0 ∈Db. Consequently, by part I of Lemma S.1.5, we find the following holds
on Ξ

m1n(L̂+)−m1n(λ1 + iη0) =
ŝ4

(1− ϕŝ3)

(
L̂+ − λ1 − iη0

)
+O

(
(logn)(n−1/(d+1))min{d,2}

)
.

(S.23)

Again by m1n(L̂+) =−l−1, Together with the second part of Lemma S.3.3, considering the
real parts of both sides of (S.23), we obtain that on Ξ

−l−1 + ξ−2
(1) +OP(n

−1/2+3ϵd) =
ŝ4

(1− ϕŝ3)

(
L̂+ − λ1

)
+O

(
(logn)(n−1/(d+1))min{d,2}

)
.

This completes our proof.

The rest of this section leaves to the proof of Lemma S.3.3. We first prove the following
lemma which will be used in the proof of Lemma S.3.3. It essentially locates the points in
D′

b for which ImmQ(z)≫ η0 near the edge. It is a counterpart of [56, Lemmas 5.12, 5.13
and 5.15] and [52, Lemmas 5.13, 5.14 and 5.16]. Due to similarity, we only sketch the key
points of the proof. Recall z0 defined in (6.7).
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LEMMA S.3.4. Suppose the assumptions of Lemma S.3.3, we have that the followings
holds with high probability

(1). For any z =E + iη0 ∈D′
b satisfying that |z − z0|⩾ n−1/2+3ϵd ,

(S.24) Imm1(z)≍ η0, ImmQ(z)≍ η0.

(2). For m(1)
1 (z) and m

(1)
Q (z) defined around (S.8), we have that for all z =E + iη0 ∈D′

b,

(S.25) Imm
(1)
1 (z)≍ η0, Imm

(1)
Q (z)≍ η0.

(3). There exists some E′
0 ∈ R such that for z′0 = E′

0 + iη0, the followings holds simultane-
ously

(S.26) |z′0 − z0|⩽ n−1/2+3ϵd , and Imm(z′0)≫ η0.

PROOF. Due to similarity, we focus our discussion on m1(z) and will explain the minor
differences for mQ(z) from line to line. Recall (S.9). Our proof relies on the following fluc-
tuation average which provides a stronger control on n−1

∑p
i=1Zi than the one in Remark

S.2.9. They are counterparts of Lemmas 5.8 and 5.9 and Corollary 5.10 of [56]. We deter its
proof to Appendix S.6.3.

LEMMA S.3.5. Suppose the assumptions of Lemma S.3.4 hold, we have that the follow-
ings holds on Ω

(1). For all i ̸= 1 and all z =E + iη0 ∈D′
b, we have that

(S.27) |m2 −m
(1)
2 | ≺ 1

nη0
, |m2 −m

(i)
2 |+ |m(i)

2 −m
(i1)
2 | ≺ n−1+1/(d+1)+4ϵd .

(2). For all z ∈D′
b, ∣∣∣∣∣ 1n

n∑
i=2

Zi

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=2

Z
(1)
i

∣∣∣∣∣≺ n−1/2− 1

2
( 1

2
− 1

d+1
)+2ϵd .

(3). For all z ∈D′
b, ∣∣∣∣∣ 1n

n∑
i=2

(ξ2i + ξ4i )Zi

(1 + ξ2im1n(z))2

∣∣∣∣∣≺ n−1/2− 1

2
( 1

2
− 1

d+1
)+2ϵd .

Armed with Lemma S.3.5, we proceed to finish our proof. The proof of part (1) is similar
to that of (S.20) by using the local law Theorem S.1.9. We only provide the key arguments.
Using (S.51), (S.49), and (S.50), we see that

m1 =− 1

n

p∑
i=1

σi

z − σi

n

∑n
j=1

ξ2j
1+ξ2jm1+Zj

+
1

n
tr(R1Σ)+

1

n
tr(R2Σ).

According to Theorem S.1.9, by a discussion similar to (S.53) using Remark S.2.9, we have
that

Imm1(z) =
1

n

p∑
i=1

σiη0

|z − σi

n

∑n
j=1

ξ2j
1+ξ2jm1n+Zj

|2
+

1

n

p∑
i=1

σ2
i

n

∑n
j=1

ξ4j Imm1+ξ2j ImZj

|1+ξ2jm1n+Zj |2

|z − σi

n

∑
j

ξ2j
1+ξ2jm1n+Zj

|2

+O≺

 1

n

n∑
j=1

Zj

|1 + ξ2jm1n +Zj |2
+

1

(nη0)2


:= R1 + R2 + R3.

(S.28)



MULTIPLIER BOOTSTRAP MEETS HIGH-DIMENSIONAL PCA 57

Together with Assumption S.1.1, (S.27) and Remark S.2.9, we find that for some small con-
stant c′ > 0, when n is sufficiently large,

(S.29)

∣∣∣∣∣∣z − σi
n

n∑
j=1

ξ2j
1 + ξ2jm1n(z) +Zj

∣∣∣∣∣∣⩾ c′.

This implies that

(S.30) R1 ≍ η0.

For R2, on the one hand, by Theorem S.1.9 and (S.45), we can conclude that there exists
some constant 0< c′ < 1,

1

n

p∑
i=1

σ2
i

n

∑n
j=1

ξ4j
|1+ξ2jm1n+Zj |2

|z − σi

n

∑
j

ξ2j
1+ξ2jm1n+Zj

|2
⩽ c′ < 1.

Moreover, as |z − z0|⩾ n−1/2+3ϵd , according to (S.17) and Remark S.2.9, we find that 1 +
ξ2jm1n(z) + Zj ⩾ Cn−1/2+3ϵd for some constant C > 0. Together with (S.29) and (3) of
Lemma S.3.5, we find that with high probability

1

n

p∑
i=1

σ2
i

n

∑n
j=1

ξ2j ImZj

|1+ξ2jm1n+Zj |2

|z − σi

n

∑
j

ξ2j
1+ξ2jm1n+Zj

|2
≪ η0.

Consequently, we have that with high probability

(S.31) R2 = c′ Imm1 + o(η0).

Similarly, we can prove that with high probability R3 = o(η0). Together with (S.30), (S.31)
and (S.28), we can conclude the prove of m1(z). The discussion for mQ(z) is similar except
we need to use (S.50) and (S.52).

The proof of part (2) is similar to that of part (1) using Lemma S.3.5, Theorem S.1.9 and
Remark S.2.9. The idea is analogous to the proof of Lemma 5.13 of [56] or Lemma 5.14 of
[52]. We omit further details.

Finally, for part (3), we find from Lemma S.1.15, (S.25) and (S.28) that for some small
constant ϵ′ < ϵd/2, with high probability,

(S.32) |Z1|⩽ n−1/2+ϵ′ .

Without loss of generality, we assume that ξ21 ⩾ ξ22 ⩾ · · · ⩾ ξ2n. On the one hand, by the
definition of m2(z) and (S.9), we have

m2 =
ξ21G11

n
+

1

n

n∑
i=2

ξ2i

−z(1 + ξ2im
(i)
1 +Zi)

.

Together with Lemma S.1.13, we see that

1

ξ21G11
=−z(1 + ξ21m

(1)
1 +Z1).(S.33)

Denote

z±0 = z0 ± n−1/2+3ϵd .
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Recall (6.7) that 1 + ξ21 Rem1n(E0 + iη0) = 0. Using Theorem S.1.9, (S.29) and (S.17),
together with (S.25) and Remark S.2.9, we conclude that for some constant C > 0

1

ξ21G11(z
−
0 )

⩾Cn−1/2+3ϵd , and
1

ξ21G11(z
+
0 )

⩽−Cn−1/2+3ϵd .

Consequently, by continuity, we find that there exists z1 = E1 + iη0 with E1 ∈ (E0 −
n−1/2+3ϵd ,E0 + n−1/2+3ϵd) that ReG11(z1) = 0. For the choice of z1, together with (S.33),
we find that

| Im(z1ξ
2
1G11(z1))|=

1

| Imm
(1)
1 (z1) + ImZ1|

≥ n1/2−ϵd/2,(S.34)

where we used (S.32) with the assumption ϵ′ < ϵd/2 and (S.25). On the other hand, following
lines of the proof of [56, Lemma 5.15], by a decomposition similar to (S.21) and a discussion
similar to (S.28), using Lemma S.3.5, we find that

Imm1(z1)≍ η0 +
Im(ξ21z1G11(z1))

n
.

Together with (S.34), we conclude that

Imm1(z1)≫ η0.

The discussion for mQ is similar and we omit the details. This completes our proof.

Finally, armed with Lemma S.3.4, we proceed to the proof of Lemma S.3.3. Since the
details are similar to those of Proposition 4.6 of [56] or Proposition 4.7 of [52], we only
provide the key ingredients.

Proof of Lemma S.3.3. We first prove (S.21). Using the spectral decomposition of Q, for
mQ(z) in (6.1), we find that

ImmQ(E + iη0) =
1

n

n∑
i=1

η0
(λi −E)2 + η20

.(S.35)

This yields that

ImmQ(λ1 + iη0)≥ (nη0)
−1 ≫ η0,

where we used the definition of η0 in (6.7). It is clear that λ1 = OP(1). First, if λ1 ∈ D′
b,

then the proof follows directly from (S.24). Second, if λ1 /∈D′
b, on the other hand, for the

upper bound, by (3) of Lemma S.3.4 and (S.19), using the definition of D′
b in (S.12), with an

argument similar to Proposition 4.7 of [56], we have that on Ω, λ1 <E0 + n−1/2+3ϵd holds
with 1− o(1) probability. On the other hand, for the lower bound, we prove by contradiction.
We assume that λ1 < E0(1) − n−1/2+3ϵd . Then we see from (S.35) that ImmQ(E + iη0)

is a decreasing function of E on the interval (E0 − n−1/2+3ϵd ,E0 + n−1/2+3ϵd). How-
ever, from Lemma S.3.4 and its proof (recall that z−0 = E0 − n−1/2+3ϵd ), we have seen
that, ImmQ(z0) ≫ η0, ImmQ(z

−
0 ) ∼ η0, which is a contradiction. It implies that λ1 ≥

E0(1)− n−1/2+3ϵd and completes the proof of (S.21).
Then we prove (S.22). By (S.17), (S.19) and (S.20), we find that

Rem1n(λ1 + iη0) = Rem1n(z0) +OP(n
−1/2+3ϵd) =− 1

ξ2(1)
+OP(n

−1/2+3ϵd),

where in the last step we used (6.7). This completes our proof.
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APPENDIX S.4: PROOF OF THE RESULTS OF SECTION 3

In this section, we prove Theorems 3.1 and 3.3 using the results in Sections S.3.1 and
S.3.2.

S.4.1. Proof of the results in Section 3.1

Proof of Theorem 3.1. For the first part, according to (S.8), by Lemma S.1.12, when n is
sufficiently large,

ϑ1 = (ξ2(1) + d1) (ϕσ̄1 +OP(e)) .

Together with Proposition S.3.1, we find that

λ1 = (ξ2(1) + d1) (ϕσ̄1 +OP(e)) +OP

(
n−1/2+2ϵd1

)
.

Using (S.25) and (S.26) and the definition of d1 in (S.4), we can complete the proof for the
first part.

For the second part, it follows directly from the results in Lemma S.1.16, (S.25) and (S.26).
This completes our proof.

S.4.2. Proof of the results in Section 3.2

Proof of Theorem 3.3. Due to similarity, we focus our discussion on the separable co-
variance i.i.d. data as in case (2) of Assumption 2.1. For part (1), (3.6) has been proved in (II)
of Lemma S.1.5. For (3.7), the proofs follow from Proposition S.3.2, II of Lemma S.1.5 with
the fact d > 1 and (S.27). Then (3.8) follows from (3.7) and Lemma S.1.16.

Then we proceed to the proof of parts (2) and (3). Following [27, Lemma 2.5], we see that
conditional on Ω in Lemma S.1.12, (L̂+,m1n(L̂+)) should satisfy the following systems of
equations

m1n(L̂+) =
1

n

p∑
i=1

σi

−L̂+ + σi

n

∑
j

ξ2j

1+ξ2jm1n(L̂+)

, 1 =
1

n

p∑
i=1

σ2
i

n

∑
j

ξ4j

|1+ξ2jm1n(L̂+)|2∣∣∣∣L̂+ − σi

n

∑
j

ξ2j

1+ξ2jm1n(L̂+)

∣∣∣∣2
.

(S.1)

Similarly, (L+,m1n,c(L+)) should satisfy the following equations

m1n,c(L+) =
1

n

∑
i

σi
−L+ + σi

∫
s

1+sm1n,c(L+)dF (s)
, 1 =

1

n

∑
i

σ2
i

∫
s2

|1+sm1n,c(L+)|2dF (s)

|L+ − σi
∫

s
1+sm1n,c(L+)dF (s)|2

.
(S.2)

Using the definitions of sk and ŝk,1 ⩽ k ⩽ 3, by (S.27) and an argument similar to II of
Lemma S.1.5, when n is sufficiently large, we see that our assumption ϕ−1 < s3 implies
ϕ−1 < ŝ3 on Ω. This yields that for some constant δ > 0

1

n

∑
i

σ2
i ŝ1

(L̂+ − σîs2)2
> 1 + δ,

1

n

∑
i

σ2
i s1

(L+ − σis2)2
> 1 + δ.(S.3)

where the first inequality is restricted on the event Ω. From now on, for notional simplicity,
we always restrict ourselves on Ω so that the discussion is purely deterministic. Recall (3.5)
and (S.10). Combining the second equations in (S.1) and (S.2) with (S.3), we readily obtain
that

(S.4) m1n(L̂+)>−l−1, m1n,c(L+)>−l−1.
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Together with (S.27), we have that for all 1⩽ j ⩽ n and some constant δ′ > 0

(S.5)
1∣∣∣1 + ξ2jm1n(L̂+)

∣∣∣ ⩾ δ′,
1

|1 + sm1n,c(L+)|
⩾ δ′ for any 0< s⩽ l.

We now proceed to the proof. The proof consists of two steps. In the first step, we prove the
results assuming that

(S.6)
∣∣∣m1n,c(L+)−m1n(L̂+)

∣∣∣=OP(n
−1/2), |L+ − L̂+|=OP(n

−1/2).

In the second step, we justify (S.6). We start with step one.
Step one: Under the assumption S.6, the key component of the proof is the following lemma.
Denote

C1 :=
1

n

p∑
i=1

σi(
L+ − σi

∫
s

1+sm1n,c
dF (s)

)2 ,
and

X :=
1

n

n∑
j=1

( ξ2j
1 + ξ2jm1n,c(L+)

−
∫

s

1 + sm1n,c(L+)
dF (s)

)
.

According to Assumption S.1.1, we have that

C1 ≍ 1.

LEMMA S.4.1. Under the assumptions of Theorem 3.3 and (S.6), we have that

C1(L̂+ −L+) = C1X +OP(n
−1).

Armed with Lemma S.4.1, we can easily prove parts (2) and (3). Recall the definition of v
in (3.5). It is clear from (S.27) X = OP(n

−1/2), and from central limit theorem that X is
asymptotically Gaussian with variance n−1v. We decompose that

λ1 −L+ = λ1 − L̂+ + L̂+ −L+.

According to [24, 28] and Lemma S.1.5, we find that on Ω, |λ1 − L̂+| ≺ n−2/3 and
n2/3γ(λ1 − L̂+) follows type-1 Tracy-Widom law. This concludes the general results in part
(3). Moreover, for part (2), it is easy to see that when d > 1, by Cauchy-Schwarz inequality,
v is bounded from blow so that the Gaussian part dominates the Tracy-Widom part and we
hence conclude the proof.

To complete Step one, we now prove Lemma S.4.1.

Proof of Lemma S.4.1. Using the first parts in equations (S.1) and (S.2), we see that

m1n,c(L+)−m1n(L̂+)(S.7)

=
1

n

∑
i

σi

L̂+ − σi

n

∑
j

ξ2j

1+ξ2jm1n(L̂+)

− 1

n

∑
i

σi

L+ − σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+)

+
1

n

∑
i

−σi
∫

s
1+sm1n,c(L+)dF (s) + σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+)

(L+ − σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+))(L+ − σi

∫
s

1+sm1n,c(L+)dF (s))
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=
1

n

∑
i

σi(L+ − L̂+)

(L̂+ − σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+))(L+ − σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+))

+
1

n

∑
i

σi

L̂+ − σi

n

∑
j

ξ2j

1+ξ2jm1n(L̂+)

− 1

n

∑
i

σi

L̂+ − σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+)

+
1

n

∑
i

σi
∫

s
1+sm1n,c(L+)dF (s)− σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+)

(L+ − σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+))(L+ − σi

∫
s

1+sm1n,c(L+)dF (s))

=
1

n

∑
i

σi(L+ − L̂+)

(L̂+ − σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+))(L+ − σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+))

+
1

n

∑
i

−σ2
i

n

∑
j

ξ4j (m1n(L̂+)−m1n,c(L+))

(1+ξ2jm1n(L̂+))(1+ξ2jm1n,c(L+))

(L̂+ − σi

n

∑
j

ξ2j

1+ξ2jm1n(L̂+)
)(L̂+ − σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+))

+
1

n

∑
i

−σi
∫

s
1+sm1n,c(L+)dF (s) + σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+)

(L+ − σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+))(L+ − σi

∫
s

1+sm1n,c(L+)dF (s))

:= T1 +T2 +T3.(S.8)

For the term T1, by (S.6), Assumption S.1.1 and (S.27), we can see that

(S.9) T1 = C1(L+ − L̂+) +OP(n
−1).

For the term T2, we see that

T2 =
1

n

∑
i

−σ2
i

n

∑
j

ξ4j (m1n(L̂+)−m1n,c(L+))

(1+ξ2jm1n(L̂+))(1+ξ2jm1n,c(L+))

(L̂+ − σi

n

∑
j

ξ2j

1+ξ2jm1n(L̂+)
)2

+
1

n

∑
i

(σ2
i

n

∑
j

ξ4j

(1+ξ2jm1n(L̂+))(1+ξ2jm1n,c(L+))

)2
(m1n(L̂+)−m1n,c(L+))

2

(L̂+ − σi

n

∑
j

ξ2j

1+ξ2jm1n(L̂+)
)2(L̂+ − σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+))

=
1

n

∑
i

−σ2
i

n

∑
j
ξ4j (m1n(L̂+)−m1n,c(L+))

(1+ξ2jm1n(L̂+))2

(L̂+ − σi

n

∑
j

ξ2j

1+ξ2jm1n(L̂+)
)2

+
1

n

∑
i

−σ2
i

n

∑
j

ξ4j (m1n(L̂+)−m1n,c(L+))2

(1+ξ2jm1n(L̂+))2(1+ξ2jm1n,c(L+))

(L̂+ − σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+))

2

+
1

n

∑
i

(σ2
i

n

∑
j

ξ4j

(1+ξ2jm1n(L̂+))(1+ξ2jm1n,c(L+))

)2
(m1n(L̂+)−m1n,c(L+))

2

(L̂+ − σi

n

∑
j

ξ2j

1+ξ2jm1n(L̂+)
)(L̂+ − σi

n

∑
j

ξ2j
1+ξ2jm1n,c(L+))

2

(S.10)

=−(m1n(L̂+)−m1n,c(L+)) +OP(n
−1),

where in the last step we used the second equation of (S.1) for the first term of (S.10), and
(S.6), Theorem S.1.9, (S.27) and Assumption S.1.1 for the second and third terms. Similarly,
for T3, we have that

(S.11) T3 = C1X +OP(n
−1).
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Insert (S.9), (S.10) and (S.11) into (S.7), we can conclude the proof.

Then we prove (S.6) to complete step two and the proof of the theorem.
Step two: To prove (S.6), we first rewrite (S.1) and (S.2) a little bit. Recall (S.3). We find that
(S.1) can be rewritten as

Fn(m1n(L̂+), L̂+) = 0,
∂Fn

∂x
(m1n(L̂+), L̂+) = 0,

where we denote

Fn(x, y) =
1

n

p∑
i=1

σi

−y+ σi

n

∑n
j=1

ξ2j
1+xξ2j

− x.(S.12)

Similarly, (S.2) can be rewritten as

Fn,c(m1n,c(L+),L+) = 0,
∂Fn,c

∂x
(m1n,c(L+),L+) = 0,

where we denote

Fn,c(x, y) =
1

n

p∑
i=1

σi
−y+ σi

∫
s

1+xsdF (s)
− x.

For pair (x̃, ỹ) so that x̃ >−l−1 (recall (S.4)), as long as they satisfy Assumption S.1.1 in the
sense that min1⩽i⩽p |ỹ− σi

∫
s

1+x̃sdF (s)|⩾ τ, by (S.27), we find that

|Fn,c(x̃, ỹ)− Fn(x̃, ỹ)|+
∣∣∣∣∂Fn,c

∂x
(x̃, ỹ)− ∂Fn

∂x
(x̃, ỹ)

∣∣∣∣+ ∣∣∣∣∂Fn,c

∂y
(x̃, ỹ)− ∂Fn

∂y
(x̃, ỹ)

∣∣∣∣=OP(n
−1/2).

(S.13)

Set (x0, y0) = (m1n,c(L+),L+). Then we have that

Fn,c(x0, y0) = 0,
∂Fn,c

∂x
(x0, y0) = 0, 0<

∂Fn,c

∂y
(x0, y0)<∞,

∂2Fn

∂y2
(x0, y0)< 0.

(S.14)

It suffices to prove the following lemma.

LEMMA S.4.2. There exists a pair (x1, y1) with condition |x1 − x0| + |y1 − y0| =
OP(n

−1/2) such that with probability 1− o(1)

Fn(x1, y1) = 0,
∂Fn

∂x
(x1, y1) = 0.(S.15)

With Lemma S.4.2, according to (S.1) and Theorem 6.2, we see that (S.6) holds. In the rest,
we prove Lemma S.4.2 using (S.13).

Proof of Lemma S.4.2. For some small ϵ > 0, we consider the probability event Ξ so that
(S.27) holds and (S.13) reads as
(S.16)

|Fn,c(x̃, ỹ)− Fn(x̃, ỹ)|+
∣∣∣∣∂Fn,c

∂x
(x̃, ỹ)− ∂Fn

∂x
(x̃, ỹ)

∣∣∣∣+∣∣∣∣∂Fn,c

∂y
(x̃, ỹ)− ∂Fn

∂y
(x̃, ỹ)

∣∣∣∣=O(n−1/2+ϵ).

We have seen that P(Ξ) = 1−o(1). Now we fix a realization {ξ2i } ∈ Ξ so that the discussions
below are purely deterministic.
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For the above fixed constant ϵ > 0, we set the region

N (x, y) := {(x, y) : |x− x0|+ |y− y0|⩽ n−1/2+ϵ},
To prove the first part of (S.15), it suffices to prove that there exists a solution of Fn(x, y) = 0
in the region N (x, y). By Bolzano’s theorem, we see that for sufficiently large n, we can find
two points (x11, y11) and (x12, y12) on N (x, y) so that Fn,c(x11, y11)< 0, Fn,c(x12, y12)>
0. Together with (S.16), we see that Fn(x11, y11)< 0, Fn(x12, y12)> 0. Therefore, by conti-
nuity, we can find some point (x′, y′) so that Fn(x

′, y′) = 0. Repeating the above procedure,
by implicit function theorem, we find that there exists a curve x ≡ x(y) on N (x, y) so that
Fn(x, y) = 0. Similarly, we can show that there exists another curve x̂≡ x̂(ŷ) on N (x̂, ŷ) so
that the second part of (S.15) holds in the sense that ∂Fn(x̂, ŷ)/∂x̂= 0.

In order to show (S.15), we need to prove that the curves (x, y) and (x̂, ŷ) must have
at least one intersection in the region N (x, y). We prove by contradiction. Otherwise, the
curve (x, y) will lie in one of the areas separated by (x̂, ŷ) with strictly ∂Fn(x, y)/∂x <
0 or ∂Fn(x, y)/∂x > 0. By (S.14), we see that N (x, y), ∂Fn(x, y)/∂y > 0. Without loss
of generality, we assume ∂Fn(x, y)/∂x < 0. On the one hand, as Fn(x, y) = 0, one may
conclude that for small neighbor around the points on (x, y), it holds that dx/dy > 0. On the
other hand, taking the derivative Fn(x, y) with respect to y, we obtain that

dx

dy
×
( 1
n

p∑
i=1

σ2
i

n

∑
j

ξ4j
(1+xξ2j )

2

(−y+ σi

n

∑
j

ξ2j
1+xξ2j

)2
− 1
)
= 0,

which implies ∂Fn(x, y)/∂x= 0 and gives the contradiction. This concludes our proof.

S.4.3. Proof of the results in Section 3.3

Proof of Corollary 3.6. As calculated by [53, Lemma 1], we have

P
(
|ξ2 − 1|> 2

√
s

T
+ 2

s

T

)
≤ e−s.

Setting s= logτ n for some large constant τ > 0, we observe that ξ2 ∈ (1−2 logτ/2 nT−1/2,1+

2 logτ/2 nT−1/2) with high probability. Then, it is free to do truncation of ξ2 on the
support (1 − 2 logτ/2 nT−1/2,1 + 2 logτ/2 nT−1/2) with negligible error after choosing τ

large. Due to this reason, we regard ξ2 has bounded support on (1 − 2 logτ/2 nT−1/2,1 +

2 logτ/2 nT−1/2) in the following. Then a direct calculation shows that

v=

∫ 1+2 logτ/2 nT−1/2

1−2 logτ/2 nT−1/2

( s

1 + sm1n,c(L+)

)2
dF (s)−

(∫ 1+2 logτ/2 nT−1/2

1−2 logτ/2 nT−1/2

s

1 + sm1n,c(L+)
dF (s)

)2
≲ (1 + 2 logτ/2 nT−1/2)2 − (1− 2 logτ/2 nT−1/2)2

≲ logτ/2 nT−1/2.

If we set T as some proportion of size n, then it holds that v= o(n−1/3). On the other hand,
as ξ2 concentrates tightly around its mean, the system equations (6.2) for each bootstrapped
matrices Qb will reduce to

1

n

p∑
i=1

σi

−z + σi

1+m1n(z)
+O(logτ/2 nT−1/2)

−m1n(z) = 0.

Comparing this reduced equation with the one in [26], we find that m1n(z) establish the sim-
ilar system equation as covariance matrix S asymptotically. As a consequence, n2/3(λb,1 −
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L̂+) inherits the typical TW limit from the top eigenvalue of S. Then, a natural candidate to
estimate L̂+ is the sample mean of {λb,1}1≤b≤B . We write L̃+ :=B−1

∑B
i=1 λb,i. By strong

law of large number, it is easy to find that

L̃+ = L̂+ +Op(B
−1/2).

Since we have set that B = n5/3, it holds that n2/3×Op(B
−1/2) = op(1). Using the Slutsky’s

theorem, together with asymptotic TW distribution for n2/3(λb,1− L̂+), we have n2/3(λb,1−
L̃+) has the same TW limit in distribution.

For the unconditional result, as illustrated above, the difference of |L̂+ − L+| is much
smaller than O(n−2/3) since v decays sufficiently fast due to our choice of T . Therefore, the
limiting spectral distribution of each Qb is essentially dominated by the TW distribution. We
omit further details here.

S.4.4. Testing for the non-spiked structure

In this section, we use Corollary 3.6 and Algorithm 1 to test non-spiked structure of a given
covariance matrix. This problem is particularly challenging if the data entails the weak spikes
(comparing to the situation of strong spikes in Section 4). The insights to apply the above
results to generate a feasible algorithm to detect weak spikes lie in that if the data matrix
S exhibits non-spiked structure, its leading eigenvalues are expected to follow the Tracy-
Widom (TW) distribution, with spacings exhibiting fluctuations at the TW scale, n−2/3. This
insight motivates the use of Algorithm 1 to bootstrap the top r eigenvalues of S for some pre-
given integer r. By leveraging the empirical distributions of r bootstrapped TW eigenvalues
obtained from Algorithm 1, we can construct r confidence intervals. Statistical inference is
then performed by testing whether there exists eigenvalue of S lie outside the nearest boot-
strapped confidence intervals, thereby indicating potential rejection of the null hypothesis.

To be specific, we state a covariance matrix exhibits possibly weak spiked structure if
the leading eigenvalues distract from the bulk eigenvalues beyond the level of Tracy-Widom
fluctuation but still remain a small or bounded region. Within this section, we consider the
sample covariance matrix Ŝ = Σ̂1/2XX∗Σ̂1/2, where Σ̂ has the spectral decomposition

(S.17) Σ̂ =

p∑
j=1

σ̂jvjv
∗
j .

We suppose that for fixed constant r ≥ 0, the r largest eigenvalues σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂r , may
exhibit a significant separation from the remaining eigenvalues σ̂r+1 ≥ · · · ≥ σ̂p, which are
clustered within a dense interval. To be specific, we assume that for some constant τ > 1 and
a large value s > 0 (bounded or possibly divergent with some rates of n),

σ̂r − σ̂r+1 > s, τ ≥ σ̂r+1 ≥ σ̂p ≥ τ−1.

We consider the hypothesis testing problem

(S.18) H0 : r = 0 vs Ha : r ⩾ 1.

Based on Algorithm 1 and Corollary 3.6, we can propose the following algorithm to test
(S.18).
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Algorithm 4 Resampling testing for (S.18)

Inputs: Given integer r0 > 0, original data Ŝ, type I error α.
Step One: Plug in Ŝ and run Algorithm 1 to bootstrap first leading r0 eigenvalues from Ŝ.
Suppose for each 1≤ i≤ r0, we obtain the sequence bootstrapped eigenvalues {λb,i}1≤b≤B .
Calculate F

(i)
TW(x) :=B−1#{b : n2/3(λb,i − L̃

(i)
+ )≤ x} as in Algorithm 1, where

L̃
(i)
+ =B−1

∑B
b=1 λb,i. For given type I error α, calculate the 1− α quantile of each

F
(i)
TW(x), denoted as {xi,1−α}1≤i≤r0 . Construct the intervals

Ii := [L̃
(i)
+ − n−2/3xi,1−α/2, L̃

(i)
+ + n−2/3xi,1−α/2] for each 1≤ i≤ r0.

Step Two: Calculate the eigenvalues of the original covariance matrix Ŝ and order them in
λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n ≥ 0.
Step Three: Set a= r0, run the following iteration:

if λ̂a−1 ∈ Ia then
Update a= a− 1 and repeat till.

if There is no eigenvalue λ̂i, i < a in the interval Ia then
Record r = a− 1.

else if a= 0 then
Record r = 0.

end

Output: Reject H0 in (S.18) if r > 0.

COROLLARY S.4.3. Suppose the assumptions of Theorem 3.3 and Corollary 3.6 hold.
Under H0, we have

lim
n→∞

P(r = 0) = 1.

On the other hand, under Ha, we have

lim
n→∞

P(r > 0) = 1.

PROOF. The proof mainly bases on Corollary 3.6 for non-spiked eigenvalues. We omit
further details here.

APPENDIX S.5: PROOF OF THE RESULTS OF SECTION 4

In this section, we prove the results of Section 4.

S.5.1. Proof of the results in Section 4.1

Proof of Theorem 4.1. Recall the bootstrapped sample covariance matrix Q̃, denote Ỹ =

Σ̃1/2XD. Then we write Q̃ := Ỹ Ỹ ∗ and Q̃ := Ỹ ∗Ỹ . Since these two matrices have the same
non-zero eigenvalues, we focus on the later one for convenience. For the spiked covariance
matrix model in (2.12), we decompose it as follows

Σ̃ := Σs +Σo,
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where we denote the two p× p matrices as

(S.1) Σs :=

r∑
i=1

σ̃iviv
∗
i ≡ V1ΛsV

∗
1 , Σo :=

p∑
i=r+1

σiviv
∗
i ≡ V2ΛoV

∗
2 .

Consequently, we can decompose Q̃ as follows

Q̃=DX∗Σ̃XD =DX∗ΣsXD+DX∗ΣoXD.

Note that with high probability

∥DX∗ΣoXD∥= ∥D2X∗Σ0X∥⩽ ∥D2∥∥X∗Σ0X∥ ≤ σrξ
2
(1)∥X

∗X∥ ∼ ξ2(1),

where in the last step we used [70] that ∥X∗X∥ is bounded from above with high probability.
Using (S.25) and (S.26) as well as Weyl’s inequality, we see that from the assumption of (4.4)
that, for 1⩽ i⩽ r,

(S.2)
µi − λi(DX∗ΣsXD)

σ̃i
= oP(1).

Then we consider the first few largest eigenvalues of DX∗ΣsXD, or equivalently those of
Σ
1/2
s XD2X∗Σ

1/2
s . By a discussion similar to Lemma D.1 of [27], we find that if λ is an

eigenvalues of Σ1/2
s XD2X∗Σ

1/2
s , recalling (S.1), we have that

det(V ∗
1 XD2X∗V1 − λΛ−1

s ) = 0.(S.3)

Note that

V ∗
1 XD2X∗V1 −Eξ2Ir = V ∗

1 X(D2 −Eξ2Ir)X∗V1 +Eξ2 × (V ∗
1 XX∗V1 − Ir),

where Ir is a r× r identity matrix. For the first term in decomposition, we observe that

X(D2 −Eξ2Ir)X∗ =


∑

i(ξ
2
i −Eξ2)x2i1

∑
i(ξ

2
i −Eξ2)xi1xi2 · · ·

∑
i(ξ

2
i −Eξ2)xi1xir∑

i(ξ
2
i −Eξ2)xi2xi1

∑
i(ξ

2
i −Eξ2)x2i2 · · ·

∑
i(ξ

2
i −Eξ2)xi2xir

...
...

. . .
...∑

i(ξ
2
i −Eξ2)xirxi1

∑
i(ξ

2
i −Eξ2)xirxi2 · · ·

∑
i(ξ

2
i −Eξ2)x2ir


r×r

,

By Assumptions 2.1 and 2.2, and notice that r is finite, a straightforward calculations indicate
that

∥X(D2 −Eξ2Ir)X∗∥=OP(n
−1/2).

It follows that

∥V ∗
1 X(D2 −Eξ2Ir)X∗V1∥=OP(n

−1/2).

On the other hand, by Theorem 7.1 of [7], one has

∥V ∗
1 XX∗V1 − Ir∥=OP(n

−1/2).

As a consequence, we conclude that

∥V ∗
1 XD2X∗V1 −Eξ2Ir∥=OP(n

−1/2),

Together with (S.3), we conclude that for 1⩽ i⩽ r

(S.4)
λi(DX∗ΣsXD)

σ̃i
= Eξ2 + oP(1).

Combining (S.2), we obtain the first order result for the limiting property of µi/σ̃i.
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Then we proceed with the second order results for µi. The proof follows from strategies
similar to Theorem 3.3 of [74]. We focus on explaining the main ideas and omit the details.
The core of the proof is to introduce the auxiliary quantities θi,1 ⩽ i ⩽ r, where for each
1⩽ i⩽ r, θi satisfies the equation

θi
σ̃i

=
(
1− 1

nθi

p∑
j=r+1

σj

1− σ̃−1
i σj

)−1
.(S.5)

With the restriction that θi ∈ [σ̃i,2σ̃i], the existence of uniqueness of θi have been justified in
[15, 74]. Furthermore, under the assumption of (4.4), we can conclude from equation (2.10)
of [15] that

(S.6) θi/σ̃i = 1+ o(1),1⩽ i⩽ r.

In order to establish the asymptotics of µi/θi, for notational convenience, we now work with
the rescaled matrix

Q̌ := ĎX∗Σ̃XĎ, Ď2 := (Eξ2)−1D2,

whose eigenvalues are denoted as λ̌1 ⩾ λ̌2 ⩾ · · · ⩾ λ̌{p∧n} > 0. Note that µi = Eξ2λ̌i. By
a discussion similar to (S.3) and (S.12), using (S.1), we find that λ̌i,1 ⩽ i ⩽ r satisfy the
equation

det(Λ−1
s − V ∗

1 XĎ(λ̌iI − ĎX∗ΣoXĎ)−1ĎX∗V1) = 0.

Denote B(x) := xI − ĎX∗ΣoXĎ and δi = (λ̌i − θi)/θi, the above determinant can be
rewritten into

det(θiΛ
−1
s − θiV

∗
1 XĎB−1(θi)ĎX∗V1 + δiθ

2
i V

∗
1 XĎB−1(λ̌i)B

−1(θi)ĎX∗V1) = 0.
(S.7)

Following the procedure in Section 7.1 of [15] or Lemma C.5 of [74], we find that for 1 ⩽
i, l⩽ r (recall that Σ̃ is assumed to be diagonal)

θie
∗
iV

∗
1 XĎB−1(θi)ĎX∗V1el = 1(l= i)

( n∑
j=1

x2kjξ
2
j /Eξ2 −

1

n

n∑
j=1

ξ2j /Eξ2 + ζi
)
+ oP(n

−1/2),

where ζi is a random quantity associated with θi satisfying

(S.8) ζi :=
1

n

n∑
j=1

ξ2j
Eξ2

(
1−

ξ2j
nθiEξ2

p∑
k=r+1

σk

1− θ−1
i σkζi

)−1
.

Similarly, by a discussion similar to Lemma C.6 of [74], we conclude that

δiθ
2
i [V

∗
1 XĎB−1(λ̌i)B

−1(θi)ĎX∗V1]il = δi × (1(l= i) + oP(1)).

Inserting the above two controls into (S.7), by the assumption of (2.13), using Leibniz’s
formula for determinant, one has that

δi(1 + oP(1)) = (Eξ2)−1v∗
iXD2X∗vi −

1

n

n∑
j=1

ξ2j /Eξ2 −
θi
σ̃i

+ ζi + oP(n
−1/2).(S.9)
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By a similar argument as in Lemma 3.2 of [74] and notice that ξ2j ≪ σ̃i,1 ≤ j ≤ n, one
has

ζi −
θi
σ̃i

=
1

n

n∑
j=1

ξ2j /Eξ2 − 1 +
( 1
n

p∑
k=r+1

σk
σ̃i

×E(ξ21/Eξ2 − 1)2
)
× (1 + o(1))

+
(( 1

n

p∑
k=r+1

σk
σ̃i

)2 ×E(ξ21/Eξ2 − 1)3
)
× (1 + o(1))

+
( 1
n

p∑
k=r+1

σk
σ̃i

)2 × oP(n
−1/2) + oP(n

−1/2).

(S.10)

Combining the above results, we conclude that,

λ̌i − θi
θi

= (Eξ2)−1v∗
iXD2X∗vi − 1 + δc/Eξ2 + oP(n

−1/2),

where

δc := Eξ2×
( 1
n

p∑
k=r+1

σk
σ̃i

×E(ξ21/Eξ2−1)2
)
×(1+o(1))+Eξ2×

(( 1
n

p∑
k=r+1

σk
σ̃i

)2×E(ξ21/Eξ2−1)3
)
×(1+o(1)),

is defined as a deterministic correction quantity. By Assumption 2.1 and using central limit
theorem, we can conclude the proof of (4.5).

Finally, we briefly illustrate the proof of (4.6). The argument follows closely from a dis-
cussion similar to the proof of [27, Theorem 3.7], or [50, Theorem 2.7], or [14, Theorem
2.7], or [23, Theorem 3.6]. Due to similarity, we only sketch the proof strategies, provide the
key ingredients and point out the main differences. In fact, our proof will be easier since the
spikes are much larger than the edges and we only consider the first few extremal non-outlier
eigenvalues. As discussed in [27, Appendix D], or [50, Section 6], or [14, Section 4], the
proof consists of the following three steps.

(i). We first find the permissible regions in which contain the eigenvalues of Q̃ with high
probability.

(ii). Then we apply a counting argument to a special case (where all the spikes are well-
separate), and show that the results hold under this special case.

(iii). Finally we use a continuity argument to extend the results in (ii) to the general case
using the gaps in the permissible regions.

In what follows, we choose a realization {ξ2i } ∈Ω so that (S.27) holds with 1−o(1) proba-
bility as in Lemma S.1.12. With this restriction, m1n and ϑ1 in (6.5) are purely deterministic.
Recall d1 in (S.4) and the ϵ used therein. Due to similarity, we focus on the polynomial decay
setting (2.3). The exponential decay case can be handled similarly.

For Step (i), to find the permissible region, for some large constant C > 0, we denote
the set for 1⩽ i⩽ k

(S.11) Γi :=
{
x ∈ [λi, ϑ1 + n−1/2+2ϵd1] : dist(x, spec(Q))> Cn−1/2+2ϵd1

}
,

where spec(Q) stands for the spectrum of Q. The results of Step (i) can be summarized as
follows.

LEMMA S.5.1. There exists some constant C> 0 so that the set ∪iΓi contains no eigen-
value of Q̃.
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PROOF. The proof is similar to that of Lemma D.4 of [27] or Lemma 5.4 of [23] and we
only sketch the key points here. Notice that Σ̃ has the same size as Σ, we can decompose that
Σ̃ = Σ1 + Σ with Σ1 = Σ̃− Σ = U1Λ1U

∗
1 , where we recall that Σ̃ is constructed based on

Σ. Here Λ1 is an r× r matrix containing the nonzero eigenvalues of Σ1 and U1 is the p× r
matrix containing the first r associated eigenvectors in Rp. Under the assumption of (4.4)
and (2.11), we see that Λ1 is invertible when n is sufficiently large. By a discussion similar
to (S.3), we see that x is an eigenvalue of Q̃ but not Q if and only if

det(I −Λ
1/2
1 U∗

1XD(xI −DX∗ΣXD)−1DX∗U1Λ
1/2
1 ) = 0.(S.12)

Moreover, for x ∈ Γi,1⩽ i⩽ k and η := n−1/2, we define zx = x+ iη. According to Propo-
sition S.2.1, we have that with high probability∥∥(DX∗ΣXD− zxI)

−1 + z−1(I +m1n(zx)D
2)−1

∥∥
∞ =O(n−1/2−1/α+ϵ).

On the other hand, we observe that

U∗
1XD2X∗U1 = Eξ2Ir + oP(1).

Using the fact r is finite and the definition of m2n(z) in (6.2), we find that∥∥z−1U∗
1XD(I +m1n(zx)D

2)−1DX∗U1 −m2n(zx)I
∥∥
∞ =OP(n

−1/2−1/α+2ϵ),

where we used the fact that |zx| ≍ ϑ1 and (S.6). According to a discussion similar to equation
(D.29) of [27] and Lemma S.1.2, we see that for t= 1,2,

mtn(zx)−mtn(x)≍ Immtn(z) = O(n−1/2−1/α+ϵ).

Combining all the above controls, we find that for some constant C > 0∥∥∥I −Λ
1/2
1 U∗

1XD(xI −DX∗ΣXD)−1DX∗U1Λ
1/2
1

∥∥∥
∞

=C max
1⩽j⩽r

|m2n(zx)+σ̃−1
j |+OP(n

−1/2−1/α+ϵ).

Since x ∈ Γi, together with Lemma S.1.2, we see that |m2n(zx)+ σ̃−1
j | ≫ n−1/2−1/α+ϵ. This

implies that x is not an eigenvalue of Q̃ and completes the proof.

As mentioned in the proof of Theorem 2.7 of [14], once Step (i) is done, Steps (ii) and
(iii) are more standard. For Step (ii), together with the interlacing results as in Lemma C.3
of [27], we perform the counting argument to prove (4.6) for a special case assuming σ̃1 >
σ̃2 > · · · > σ̃r. The details can be found in Lemma D.5 of [27] or Lemma 5.5 of [23]. For
Step (iii), we use a continuity argument for all possible configurations {σ̃i}1⩽i⩽r. The details
can be found in the proof of Theorem 3.7 of [27]. Since most of the arguments can be made
verbatim following lines of the counterparts of [27] or [23] or [14] or [50], we omit further
details. This completes the proof.

Proof of Theorem 4.3. The proof follows from strategies similar to Theorem 3.5 of [74].
We focus on explaining the main ideas and omit the details. Before we proceed to the main
step, we need the following results for the limiting behavior of spiked eigenvalues in S̃.

LEMMA S.5.2. Under assumptions in Theorem 4.1 with σ̃r ≫ T. We have for 1≤ i≤ r,
µ̂i is closed to σ̃i in the sense that

µ̂i

σ̃i
= 1+ oP(1),
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while µ̂r+1 =OP(1). Moreover, µ̂i admits the limiting representation with θi as

µ̂i

θi
− 1 = v∗

iXX∗vi − 1 + oP(1),

for 1≤ i≤ r.

PROOF. Notice that for 1⩽ i⩽ r,

µ̂i

θi
= 1+ k∗

i (V
∗
1 XX∗V1 − Ir)ki + oP(

1√
n
),

here ki,1 ⩽ i ⩽ r, are the standard basis in Rr. Then, the proof of Lemma S.5.2 is exactly
the same as the one of Lemma 3.4 of [74] or Theorem 2.1 of [15]. We omit further details for
simplicity.

The core inputs of the proof of Theorem 4.3 are the results in Theorem 4.1 and Lemma S.5.2,

λ̌i

θi
− 1 = (Eξ2)−1v∗

iXD2X∗vi − 1 + δc/Eξ2 + oP(n
−1/2)

µ̂i

θi
− 1 = v∗

1XX∗vi − 1 + oP(n
−1/2).

Then, we have

λ̌i

µ̂i
=

λ̌i

θi
× θi

µ̂i
=

1+ (Eξ2)−1v∗
iXD2X∗vi − 1 + δc/Eξ2 + oP(n

−1/2)

1 + v∗
1XX∗vi − 1 + oP(n−1/2)

=
(Eξ2)−1v∗

iX(D2 − I)X∗vi + δc/Eξ2

v∗
1XX∗vi + oP(n−1/2)

+ (Eξ2)−1 + oP(n
−1/2)

= (Eξ2)−1v∗
iX(D2 − I)X∗vi + δc/Eξ2 + (Eξ2)−1 + oP(n

−1/2).

It remains to find the limiting distribution of v∗
iX(D2 − I)X∗vi, which is a standard argu-

ment as in the proof of Theorem 3.5 in [74], using Assumptions 2.1 and 2.2. We omit further
details here.

S.5.2. Proof of the results in Section 4.2

Proof of Corollary 4.5. From Algorithm 2, one may easily find from the strong law of
large number that for each 1≤ i≤ r

M̂i =Mi +OP(B
−1/2), V̂i = Vi +OP(B

−1/2).

Then this corollary can be concluded by Theorem 4.3, the Slutsky’s theorem and the choice
of B.

APPENDIX S.6: PROOF OF SOME AUXILIARY LEMMAS

S.6.1. Preliminary estimates: Proof of Lemmas S.1.2 and S.1.5

S.6.1.1. Proof of Lemma S.1.2

Due to similarity, we only prove the results for the separable covariance i.i.d. data model
when ξ2 decays polynomially, i.e., when (S.3) and (2.3) hold. The other cases can be proved
analogously and we omit the details.
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Proof. We start with the first statement. We now abbreviate Fn(m1n(z))≡ Fn(m1n(z), z)
throughout the proof. For the real part, it suffices to prove that with high probability for some
0<C2 < 1<C1

(S.1) Rem1n(z) ∈
[
−C1

ϕσ̄1E

E2 + η2
,−C2

ϕσ̄1E

E2 + η2

]
.

Moreover, by continuity and Theorem 6.2, it suffices to prove the following inequalities
(S.2)
ReFn(−C2ϕσ̄1E(E2+η2)−1+i Imm1n(z))< 0, ReFn(−C1ϕσ̄1E(E2+η2)−1+i Imm1n(z))> 0.

We only focus on the first part. By definition, we have that

ReFn(m1n(z)) =−Rem1n(z)(S.3)

− 1

n

p∑
i=1

σiRe(z − σi

n

∑n
j=1

ξ2j
1+m1n(z)ξ2j

)

Re2(z − σi

n

∑n
j=1

ξ2j
1+m1n(z)ξ2j

) + Im2(z − σi

n

∑n
j=1

ξ2j
1+m1n(z)ξ2j

)
.

Note that

Re
(
z − σi

n

n∑
j=1

ξ2j
1 +m1nξ2j

)
=E − σi

n

n∑
j=1

ξ2j (1 + ξ2j Rem1n)

(1 + ξ2j Rem1n)2 + ξ4j Im
2m1n

,

Im
(
z − σi

n

n∑
j=1

ξ2j
1 +m1nξ2j

)
= η+

σi
n

n∑
j=1

ξ4j Imm1n

(1 + ξ2j Rem1n)2 + ξ4j Im
2m1n

.

By a discussion similar to (S.7), if Rem1n =−C2(ϕσ̄1E)/(E2 + η2), we have that

Re
(
z − σi

n

n∑
j=1

ξ2j
1 +m1nξ2j

)
≥E(1− o(1)),

Im
(
z − σi

n

n∑
j=1

ξ2j
1 +m1nξ2j

)
≤ η+E × o(1).

(S.4)

Therefore, together with (S.3), we see that

ReFn(−C2ϕσ̄1E(E2 + η2)−1 + i Imm1n(z))≤C2ϕσ̄1
E

(E2 + η2)
− 1

n

p∑
i=1

σi ×E(1− o(1))

E2 + (η+E × o(1))2

≤ (C2 − 1 + o(1))
ϕσ̄1E

(E2 + η2)
< 0,(S.5)

for sufficient large n. This completes the discussion for the real part. For the complex part,
the idea is similar and it suffices to prove that when z ∈Du, for some constants C1,C2 > 0

(S.6) Imm1n(z) ∈
[
C1

ηϕσ̄1
E2 + η2

,C2η |Rem1n(z)|
]
.

Equivalently, it suffices to prove that

ImFn(Rem1n(z) + iC2η |Rem1n(z)|)< 0, ImFn

(
Rem1n(z) + iC1

ηϕσ̄1
E2 + η2

)
> 0,

where by definition

ImFn(m1n, z) =− Imm1n+
1

n

p∑
i=1

σi Im(z − σi

n

∑n
j=1

ξ2j
1+m1nξ2j

)

Re2(z − σi

n

∑n
j=1

ξ2j
1+m1nξ2j

) + Im2(z − σi

n

∑n
j=1

ξ2j
1+m1nξ2j

)
.
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The proof of the above inequalities is similar to (S.2) using (S.1). We briefly discuss the proof
of the first inequality in which case by a discussion similar to (S.4)

ImFn(m1n, z) = ηRem1n +
ϕσ̄1η(1 +E)

E2 + η2(1 +E × o(1))2

≤−C2
ϕσ̄1ηE

(E2 + η2)
+

ϕσ̄1η(1 +E)

E2(1 + η2 × o(1)) + η2(1 + 2E × o(1))
< 0.

This completes our proof.
For the second statement, from the first statement, we see that it is valid to write m1n(E).

Since ϑ1 ≫ d1 holds with high probability (see (S.6)), it suffices to prove that for some
constants 0<C2 < 1<C1, when |E − ϑ1|⩽Cd1,

(S.7) m1n(E) ∈
[
−C1

ϕσ̄1
E

,−C2
ϕσ̄1
E

]
.

Due to simplicity, we again only focus on the proof of the upper bound. According to Theo-
rem 6.2 and (S.2), we shall have that Fn(m1n(E)) = 0. Moreover, since Fn(m1n(ϑ1)) = 0,
to prove (S.7), it suffices to prove

(S.8) Fn(−C2ϕσ̄1/E)< 0, Fn(−C1ϕσ̄1/E)> 0.

Due to similarity, we focus our discussion on the first inequality. By definition, we have that

Fn(−C2ϕσ̄1/E) =C2
ϕσ̄1
E

− 1

n

p∑
i=1

σi

E − σi

n

∑n
j=1

ξ2j
1−ξ2j (C2

ϕσ̄1
E

)

=C2
ϕσ̄1
E

− 1

n

p∑
i=1

σi

E(1− σi

n

∑n
j=1

ξ2j
E−C2ξ2jϕσ̄1

)
.

By a discussion similar to (S.7), we further have that

(S.9) Fn(−C2ϕσ̄1/E) =C2
ϕσ̄1
E

− 1

n

p∑
i=1

σi
E(1− o(1))

= (C2 − 1 + o(1))
ϕσ̄1
E

< 0.

This completes the proof of the first statement.
Finally, we prove the third statement using the first two statements. For z ∈Du, by defini-

tion, we have that

m2n(z) =
1

n

n∑
j=1

ξ2j
−E − iη− (E + iη)ξ2j (Rem1n + i Imm1n)

=
1

n

n∑
j=1

ξ2j

[
(−E − ξ2j (ERem1n − η Imm1n) + iη+ iξ2j (E Imm1n + ηRem1n))

]
(−E − ξ2j (ERem1n − η Imm1n))2 + (−η− ξ2j (E Imm1n + ηRem1n))2

.

(S.10)

According to the results in the first two statements, the definition of Du in (S.5) and the
elementary relation that |m1n(z)|=O(1), we find that for some constants C1,C2 > 0, when
n is sufficiently large

|(−E − ξ2j (ERem1n − η Imm1n) + iη+ iξ2j (E Imm1n + ηRem1n))|⩽C1E,

and

(−E − ξ2j (ERem1n − η Imm1n))
2 + (−η− ξ2j (E Imm1n + ηRem1n))

2 ⩾C2(E + ξ2j )
2.
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Together with a discussion similar to (S.7), we readily see that for some large constant C > 0

|m2n(z)| ≤
C

n

n∑
j=1

Eξ2j
(E + ξ2j )

2
≤ C

n

n∑
j=1

ξ2j
E − ξ2j

=O(e2).(S.11)

Then together with the definition of mn(z), we see that

|mn(z)| ≤
1

p|z|

p∑
i=1

1

|1 + σim2n(z)|
≤ 1

p|z|

p∑
i=1

1

1 + σi|m2n(z)|
≤ 1

|z|
=O(E−1).

To control the imaginary part, by (S.10), we can write

Imm2n(z) =
1

n

n∑
j=1

ξ2j (η+ ξ2j (E Imm1n + ηRem1n))

(−E − ξ2j (ERem1n − η Imm1n))2 + (−η− ξ2j (E Imm1n + ηRem1n))2
.

Combining with (S.1) and (S.6), we see that for some constant C > 0

Imm2n(z)⩽
C

n

n∑
j=1

ξ2j (η+ ξ2j η)

(E + ξ2j (O(1) + η2 ×O(E−1)))2 + (η+ ξ2j ×O(1) + η×O(E−1))2

=O
( 1
n

n∑
j=1

ηξ4j
O(E2)

)
=O

( η
E

)
,(S.12)

where in the last step we used (S.25). Moreover, using the definition of mn(z) in (6.2), we
can write

Immn(z) =
1

p

p∑
i=1

η+ σiηRem2n + σiE Imm2n

(E + σiERem2n − σiη Imm2n)2 + (η+ σiηRem2n + σiE Imm2n)2
.

Together with (S.11) and (S.12), we can easily see that

Immn(z) = O
( η

E2

)
.

This completes our proof.

REMARK S.6.1. We may observe from the proof of Lemma S.1.2 that in many cases we
can directly write m1n(ϑ1) without considering its imaginary part. For example, when (2.3)
holds, for z0 = ϑ1 + iη, using (S.3) and (6.5), we see that

lim
η↓0

Imm1n(z0) = lim
η↓0

1

n

∑
i

σi(η+
σi

n

∑n
j=1

ξ4j Imm1n(z0)

|1+ξ2jm1n(z0)|2 )

|z0 − σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z0)

|2

= lim
η↓0

1

n

∑
i

σ2
i

n

∑n
j=1

ξ4j Imm1n(z0)

|1+ξ2jm1n(z0)|2

|ϑ1 − σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z0)

|2

=
( 1
n

∑
i

σ2
i

n

∑n
j=1

(ξ2(1)+d2)2ξ4j
|ξ2(1)+d2−ξ2j |2

|ϑ1 − σi

n

∑n
j=1

(ξ2(1)+d2)ξ2j
ξ2(1)+d2−ξ2j

|2

)
× lim

η↓0
Imm1n(z0).

Then by a discussion similar to (S.12), using the fact that α⩾ 2, we find that for any ϑ1 ≳ ξ2(1)

lim
η↓0

Imm1n(z0) = o(1)× lim
η↓0

Imm1n(z0),

which holds true if and only if limη↓0 Imm1n(z0) = 0. This shows that m1n(ϑ1) is well-
defined for ϑ1 ≳ ξ2(1).



74

S.6.1.2. Proof of Lemma S.1.5

Proof. We first prove the results when conditionally. Let Ω be the event satisfying (c)
of Definition S.1.10. According to Lemma S.1.12, we find that P(Ω) = 1 − o(1). Now we
choose a realization {ξ2i } ∈Ω so that the proofs of parts (a) and (b) are purely deterministic.

Proof of (a). We start with (S.13). According to (6.2), we have that

m1n(z) =
1

n

p∑
i=1

σi

−z + σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

.

To characterize the bulk of the spectrum, we take the imaginary part on the both sides of the
above equation and let η ↓ 0 to obtain that

Imm1n(z) =
1

n

p∑
i=1

σ2
i

(
1
n

∑
j

ξ4j Im(m1n)

Re2(1+ξ2jm1n)+ξ4j Im
2(m1n)

)
(E −Re(σi

n

∑
j

ξ2j
1+ξ2jm1n

))2 + Im2(σi

n

∑
j

ξ2j
1+ξ2jm1n

)
.(S.13)

The above equation can be further rewritten as

0 = Imm1n(z)(1− g(m1n,E)),(S.14)

where g(m1n,E) is denoted as

g(m1n,E) :=
1

n

p∑
i=1

σ2
i

(
1
n

∑
j

ξ4j
Re2(1+ξ2jm1n)+ξ4j Im

2(m1n)

)
(E −Re(σi

n

∑
j

ξ2j
1+ξ2jm1n

))2 + Im2(σi

n

∑
j

ξ2j
1+ξ2jm1n

)
.

Similar to the arguments used in [52, 56], it is easy to see that for any fixed Rem1n <−l−1

and E, g(m1n,E) → 0 when | Imm1n| → ∞, and g(m1n,E) → +∞ in order to satisfy
(S.14) when | Imm1n| → 0.

Therefore, by monotonicity, there exists a unique Imm1n > 0 such that (S.14) holds,
which corresponds to the bulk of the spectrum.

Furthermore, for any fixed Rem1n > −l−1 and fixed E so that Theorem 6.2 holds, we
have that g(m1n,E) is monotone decreasing in terms of | Imm1n|.

Let E+ be defined according to m1n(E+) = −l−1. In view of (S.3) and (S.2), we have
that

l−1 =
1

n

p∑
i=1

σi
E+ − σîs2

.

Let s̃3 be defined similarly as ŝ3 in (S.10) by replacing L̂+ with E+. Based on the above
arguments and definitions, it is easy to see that

sup
Rem1n∈(−l−1,∞)

g(m1n,E) = g(−l−1,E+) = ϕs̃3.

Assuming that ϕs̃3 < 1, we conclude that (S.14) holds only if Imm1n(z) = 0 which corre-
sponds to the outside part of the spectrum. This shows that

m1n =−l−1 is at the right edge of the spectrum and gives the expression of the end point
L̂+ as in (S.13). Therefore, L̂+ =E+ and ŝ3 = s̃3. This completes the proof.

Second, the proof of (S.14) follows from an argument similar to Lemma 8.4 of [56]
utilizing the estimate (2.5), we omit the details.

Third, we prove (S.15). The closeness of sk and ŝk, k = 1,2,3,4, follows from ar-
guments similar to the last equation of (S.27). Now we proceed to the proof of the sec-
ond equation. According to the proof of (S.13) and an analogous argument, we found that
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m1n(L̂+) = −l−1 and m1n,c(L+) = −l−1. Together with the definitions of s2, ŝ2, m2n and
m2n,c, we find that

(S.15) s2 =−m2n,c(L+)L+, ŝ2 =−m2n(L̂+)L̂+.

Next, by (S.13) and an analogous argument for L+ (see (3.6) and the proof of part II below),
we have that

0 =
1

n

p∑
i=1

−lσi
(−L+ + σis2)

+
1

n

p∑
i=1

lσi

(−L̂+ + σîs2)

=
1

n

∑
i

−lσi
(−L+ + σis2)

+
1

n

∑
i

lσi
(−L+ + σîs2)

+
1

n

∑
i

lσi(L̂+ −L+)

(−L̂+ + σîs2)(−L+ + σîs2)
.

(S.16)

By first equation of (S.15), (S.15) and Assumption S.1.1, we can conclude our proof.
Fourth, we work with (S.16) and (S.17). Due to similarity, we only prove (S.16). Ac-

cording to (6.2), we have that

m1n(z) =
1

n

p∑
i=1

σi

−z + σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

.

Consequently, it is easy to see that for z = L̂+ − κ+ iη ∈Db,

m1n(L̂+)−m1n(z) =R1(L̂+ − z) +R2(m1n(L̂+)−m1n(z)),(S.17)

where we denote

R1 :=
1

n

p∑
i=1

σi

(−L̂+ + σi

n

∑
j

ξ2j

1+ξ2jm1n(L̂+)
)(−z + σi

n

∑
j

ξ2j
1+ξ2jm1n(z)

)

R2 :=
1

n

p∑
i=1

σ2
i

n

∑
j

ξ4j

(1+ξ2jm1n(L̂+))(1+ξ2jm1n(z))

(−L̂+ + σi

n

∑
j

ξ2j

1+ξ2jm1n(L̂+)
)(−z + σi

n

∑
j

ξ2j
1+ξ2jm1n(z)

)
.

To study the terms R1 and R2, we will need the following control whose proof follows from
equations (4.24)-(4.28) of [56]

(S.18)
1

n

n∑
j=1

ξ4j
(1− ξ2j l

−1)(1 + ξ2jm1n(z))
=

{
O(logn) , d⩾ 2;

O
(
|l−1 +m1n(z)|d−2 logn

)
, 1< d⩽ 2.

For the denominator of R1, since z ∈ Db, by a discussion similar to (S.16), we find they
are bounded from below so that R1 = O(1). Furthermore, since m1n(L̂+) = −l−1, by a
straightforward calculation, using the definition of ŝ2 in (S.10) and the control (S.18), we
observe that

R1 = ŝ4 −
1

n

p∑
i=1

σi(z − L̂+) +
σ2
i

n

∑
j

ξ4j (m1n(z)+l−1)

(1−ξ2j l
−1)(1+ξ2jm1n(s))

(−L̂+ + σîs2)2(−z + σi

n

∑
j

ξ2j
1+ξ2jm1n(z)

)

= ŝ4 +O(|z − L̂+|) +O(|m1n(z) + l−1|min{d−1,1} logn),

(S.19)

where in the second step we again used an argument similar to (S.16). Similarly, for R2, we
find that

R2 = ϕŝ3 +O(|z − L̂+|) +O(|m1n(z) + l−1|min{d−1,1} logn).(S.20)
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We next provide a useful deterministic control. Using a discussion similar to [52, Lemma
A.4], we find from (6.2) that
(S.21)

1

n

p∑
i=1

σ2
i
1
n

∑n
j=1

ξ4j
(1+ξ2jm1n(z))2

| − z + σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

|2
= 1− 1

n

∑
i

σiη/ Imm1n(z)

| − z + σi

n

∑
j

ξ2j
1+ξ2jm1n(z)

|2
= 1−η

|m1n(z)|2

Imm1n(z)
.

Since Imm1n(z)> 0, this implies that

0⩽ 1− 1

n

∑
i

σiη/ Imm1n(z)

|(−z + σi

n

∑
j

ξ2j
1+ξ2jm1n(z)

)|2
⩽ 1.

Together with Cauchy-Schwarz inequality, we see that

|R2|⩽ (ϕŝ3)
1/2

1− 1

n

∑
i

σiη/ Imm1n(z)

|(−z + σi

n

∑
j

ξ2j
1+ξ2jm1n(z)

)|2

1/2

< 1,

where we used the fact Imm1n(z) > 0 and η > 0. Using (S.17), we find that m1n(L̂+) −
m1n(z)≍ L̂+ − z. Then we can conclude our proof using (S.17), (S.19) and (S.20).

Finally, we prove the controls for the imaginary parts. For (S.18), the discussion is
similar to that of Lemma 4.5 of [52]. According to (S.2), we find see that

−m1n(z) =
1

n

σ1

z − σ1

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

+
1

n

p∑
i=2

σi

z − σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

=O(
1

nη
) +

1

n

p∑
i=2

σi

z − σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

,

(S.22)

where in the step we the fact that Imm1n(z)⩾ 0 and the trivial bound that
(S.23)

1

n

∣∣∣(z − σ1
n

n∑
j=1

ξ2j
1 + ξ2jm1n(z)

)−1∣∣∣⩽ n−1
(
η+

σ1
n

n∑
j=1

ξ4j Imm1n(z)

|1 + ξ2jm1n(z)|2
)−1

⩽ (nη)−1.

Taking the imaginary part on both sides of (S.22), we see that for some constant 0< c < 1,

Imm1n(z) =
1

n

p∑
i=2

σi(η+
σi

n

∑n
j=1

ξ4j Imm1n(z)

|1+ξ2jm1n(z)|)

|z − σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

|2
+O(

1

nη
)

=
1

n

p∑
i=2

σiη

|z − σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

|2
+

1

n

p∑
i=2

σ2
i

n

∑n
j=1

ξ4j Imm1n(z)

|1+ξ2jm1n(z)|

|z − σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

|2
+O(

1

nη
)

= O(η) +O(
1

nη
) + c Imm1n(z),

where in the last step we used discussions similar to (S.25) and (S.28) below. This concludes
the proof. Then we prove (S.20) and (S.19) following [56, Lemma 5.2]. Due to similarity,
we focus our analysis on m1n(z) and discuss mn(z) briefly in the end. In what follows, for
notational simplicity, without loss of generality, we assume that on Ω, ξ2(i) = ξ2i . In what
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follows, we identify η ≡ η0 till the end of the proof of the lemma. According to (6.2), we find
that

Imm1n(z) =
1

n

p∑
i=1

σi(η+
σi

n

∑n
j=1

ξ4j Imm1n(z)

|1+ξ2jm1n(z)|2 )

|z − σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

|2

=
1

n

p∑
i=1

σiη

|z − σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

|2
+

1

n

p∑
i=1

σ2
i

n
ξ41 Imm1n(z)
|1+ξ21m1n(z)|2

|z − σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

|2
+

1

n

p∑
i=1

σ2
i

n

∑n
j=2

ξ4j Imm1n(z)

|1+ξ2jm1n(z)|2

|z − σi

n

∑n
j=1

ξ2j
1+ξ2jm1n(z)

|2

= L1 + L2 + L3.
(S.24)

For the denominator, by the results and arguments in Section S.2.2.1, we observe that when
z ∈D′

b

z − σi
n

n∑
j=1

ξ2j
1 + ξ2jm1n(z)

= z − σi
n

n∑
j=2

ξ2j
1 + ξ2jm1n(z)

+
σi
n

ξ21
1 + ξ21m1n(z)

= z − σi
n

n∑
j=2

ξ2j
1 + ξ2jm1n,c(z)

+O((nη)−1 + n−1/2−1/(d+1)).

Together with Assumption S.1.1 and (S.27), we find that for some small constant c′ > 0,
when n is sufficiently large, ∣∣∣∣∣∣z − σi

n

n∑
j=1

ξ2j
1 + ξ2jm1n(z)

∣∣∣∣∣∣⩾ c′.

This implies that

(S.25) L1 ≍ η.

For L2, on the one hand, when |z − z0|⩾ Cn−1/2+3ϵd , by (S.17), we conclude that on Ω,
for some constant C > 0

(S.26) |L2|⩽ n−1/2−3ϵd Imm1n(z).

On the other hand, when z = z0 so that Rem1n(z) =−ξ21 , we can rewrite L2 as

(S.27) L2 =
1

n

p∑
i=1

σi

n Imm1n(z)

|z − σi

n

∑
j

ξ2j
1+ξ2jm1n(z)

|2
.

Next, for L3, by (S.45), (S.27) and the results and arguments in Section S.2.2.1, using the
trivial bound for L2 that |L2|=O((nη)−1), we conclude that when z ∈D′

b, for some constant
0< c< 1

(S.28) |L3|⩽ c Imm1n(z).

Consequently, we find that (S.20) follows from (S.24), (S.25), (S.26) and (S.28). More-
over, (S.19) follows from (S.24), (S.25), (S.27) and (S.28) by solving the associated quadratic
equation. Finally, we mention that the results for Immn(z) essentially follows from (6.2) that

Immn(z) =
1

n

p∑
i=1

η

|z − σi

n

∑
j

ξ2j
1+ξ2jm1n(z)

|2
+

1

n

p∑
i=1

1
n

∑
j

ξ4j Imm1n(z)

|1+ξ2jm1n(z)|2

|z − σi

n

∑
j

ξ2j
1+ξ2jm1n(z)

|2
,
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with the results for Imm1n(z). This completes our proof.

Proof of Part (b). For (S.21), on the one hand, when when d > 1 and ϕ−1 < ŝ3, the result
has been proved in (S.4). On the other hand, when −1< d⩽ 1, we employ the proof idea as
in the proof of Lemma A.3 of [54] using a continuity argument. Recall (S.12). Denote

g(x, y)≡ ∂Fn(x, y)

∂x
+ 1=

1

n

p∑
i=1

σ2
i

n

∑n
j=1

ξ4j
(1+xξ2j )

2

(−y+ σi

n

∑n
j=1

ξ2j
1+xξ2j

)2
.

From our assumption that −1< d⩽ 1 and (2.5), we find that there exist constants C,C0 > 0
such that dF (x)≥C(l−x)d ≥C0(l−x) for x ∈ (0, l). Let D be a sufficiently large constant
and choose a sufficiently small constant 0 < ϵ < D−1, we have that when n is sufficiently
large, there exists some constants C1,C2,C3 > 0

g(−(l+ ϵ)−1, L̂+) =
1

n

p∑
i=1

σ2
i

n

∑n
j=1

(l+ϵ)2ξ4j
(l+ϵ−ξ2j )

2(
L̂+ − σi

n

∑n
j=1

(l+ϵ)ξ2j
l+ϵ−ξ2j

)2
≥ C1

n

p∑
i=1

σ2
i

∫ l
l−(D−1)ϵ

(l+ϵ)2x2

(l+ϵ−x)2dF (x)

(L̂+ − σiO(1))2
≥ 1

n

p∑
i=1

C2

∫ l
l−(D−1)ϵ

(l−x)
(l+ϵ−x)2dx

(L̂+ − σiO(1))2

=
1

n

p∑
i=1

C2

∫ Dϵ
ϵ

(t−ϵ)
t2 dt

(L̂+ − σiO(1))2
⩾C3(logD− 1 +

1

D
)> 1,

for sufficiently large D > 0. Similar arguments apply to g(−(l − ϵ), L̂+). Consequently, by
the continuity of g(x, y), we obtain that ∂Fn(−l−1, L̂+)/∂x > 0. Since ∂Fn(m1n(L̂+), L̂+)/∂x=

0, we can conclude that (S.4) still holds. That is, m1n(L̂+)>−l−1. This finishes the proof
of (S.21).

For (S.22) and (S.23), using (S.21), by a discussion similar to (S.14), we see that

(S.29)
∂2Fn(m1n(L̂+), L̂+)

∂x2
≍ 1.

Armed with this input, the square root behavior of ρ at L̂+ can be obtained in the same way
as Lemma A.1 of [54]. Due to similarity, we omit the details. This completes our proof of
Part (b).

Finally, it is easy to check that we can follow lines of the proofs of parts (a) and (b) to
prove the unconditional results by replacing the related quantities verbatim. We omit further
details.

S.6.2. Control of some bad probability events: proof of Lemma S.1.12

In this subsection, we prove Lemma S.1.12 case by case. We first prove Case (a) in Definition
S.1.10.

Proof of Case (a). First, the last statement of (S.25) follows directly from strong law of
large number. In fact, the result holds almost surely.
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Then, we prove the second statement of (S.25). For the upper bound, since {ξ2i } are inde-
pendent, we readily see that when n is sufficiently large, for some constant C ′ > 0,

P(ξ2(1) ⩽Cn1/α logn) =
(
1− P(ξ2 >Cn1/α logn)

)n
≥
(
1− L(Cn1/α logn)

(Cn1/α logn)α

)n

≥ (1−C ′n−1 log−α n)n ≍ exp
(
−1/(C ′ logα n)

)
≍ 1−O(log−α n).

where in the second step we used the assumption (2.3) and in the third step we used the
assumption that L(·) is a slowly varying function. This proves the upper bound. Similarly,
for the lower bound, we can show that for some large constant C > 0

(S.30) P(ξ2(1) ≤ n1/α log−1 n) = O(logn/nC).

This concludes the proof of the second statement.
Next, we prove the first statement using the second one. Note that

P(ξ2(1) − ξ2(2) < n1/α log−1 n) = P(ξ2(1) < n1/α log−1 n+ ξ2(2)) = P(ξ2(1) <Cn1/α log−1 n) = O(logn/nC),

where the second and third steps we used the results of the second statement.
Then we justify the fourth statement. In what follows, without loss of generality, we as-

sume that nb is an integer. For c > 1 and b > 1/2, we notice that for some large constant
C > 0

P(ξ2(1) − ξ2(nb) < c−1n1/α log−1 n)≤ P(ξ2(nb) ≥ (1− c−1)n1/α log−1 n)

=

n∑
k=nb

(
n

k

)[
P(ξ2 ≥ (1− c−1)n1/α log−1 n)

]k [
P(ξ2 ≤ (1− c−1)n1/α log−1 n)

]n−k

(S.31)

=

n∑
k=nb

(
n

k

)(
logα n

n

)k(
1− logα n

n

)n−k

≤
n∑

k=nb

(en
k

)k( logα n

n

)k(
1− logα n

n

)n−k

≤
n∑

k=nb

( e
k

)k
logαk ne− logα n(1−k/n) =O(logn/nC),

where in the first step we used (S.30), in the third step we used (2.3) and in the fourth step
we used Stirling’s formula. This concludes the proof.

Finally, we proceed to the proof of the third statement. Define a sequence of intervals
Ik := {Cn1/α log−1 n+ knϵ,Cn1/α log−1 n+ (k + 1)nϵ}, k = [[1, n1/α−ϵ]]. It is easy to see
that if ξ2(i) − ξ2(i+1) < nϵ when ξ2(i), ξ

2
(i+1) ∈ Ik for some k. Setting pk := P(ξ2 ∈ Ik), we see

that

P(|j ∈ [[1, n]] : ξ2j ∈ Ik|= 0) = (1− pk)
n, P(|j ∈ [[1, n]] : ξ2j ∈ Ik|= 1) = npk(1− pk)

n−1.

We now provide an estimate for pk using (2.3). Note that

pk = P(Cn1/α log−1 n+ knϵ ≤ ξ2 ≤Cn1/α log−1 n+ (k+ 1)nϵ)

≤ 1

(Cn1/α log−1 n+ knϵ)α
− 1

(Cn1/α log−1 n+ (k+ 1)nϵ)α
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≤Cn−1 logα n
(1 + (k+ 1)n−1/α+ϵ logn)α − (1 + kn−1/α+ϵ logn)α

(1 + kn−1/α+ϵ logn)α

≤Cn−1 logα n−1/α+ϵ logn=Cn−(1+1/α)+ϵ logα n.(S.32)

Armed with the above estimate, we see that when n is sufficiently large,

P(ξ2(i), ξ
2
(i+1) ∈ Ik)≤ P(|j ∈ [[1, n]] : ξ2j ∈ Ik| ≥ 2) = 1−(1−pk)

n−npk(1−pk)
n−1 ≤ n2p2k.

Consequently, together with (S.32), we have that for some constant C1 > 0
(S.33)

P(ξ2(i)−ξ2(i+1) ≤ nϵ)≤
n1/α−ϵ∑
k=1

n2p2k ≤Cn1/α+2−ϵn−(2+2/α)+2ϵ logα n= n−1/α+ϵ logα n= o(1),

as long as ϵ < 1/α. This finishes the proof of the third statement.

Then we prove Case (b) of Definition S.1.10.

Proof of Case (b). Due to similarity and for notational simplicity, we focus on the case
β = 1. The general setting can be proved analogously and we omit the details.

We start with the second statement of (S.26). For the upper bound, for any C > 1, follow-
ing Markov inequality, we have that for some universal constant C ′ > 0 when n is sufficiently
large, by (2.4),

P(ξ2(1) <C logn) = (1− P(ξ2 ≥C logn))n ≥

(
1− Eetξ2

etC logn

)n

=

(
1− C ′

ntC

)n

≍ exp(−1/ntC−1)≍ 1−O(n−(tC−1)).

We can therefore conclude our proof using t = 1. Similarly, we can prove the lower bound
that for some large constant C1 > 1

P(ξ2(1) ⩽C−1 logn) = O(n−C1).

This completes the proof of the first statement.
For the first statement, the discussion is similar to (S.32). The main difference is that the

sequence of intervals are defined as Ik := {C−1 logn+k×C−1 logn,C−1 logn+(k+1)×
C−1 logn}, k ∈ [[1, (C −C−1)/C−1]]. By Chernoff bound, we can control pk := P(ξ2 ∈ Ik)
as follows

pk = P(C−1 logn+ k×C−1 logn≤ ξ2 ≤C−1 logn+ (k+ 1)×C−1 logn)

= P(ξ2 ≥C−1 logn+ k×C−1 logn)− P(ξ2 ≥C−1 logn+ (k+ 1)×C−1 logn)

≤C ′(n−t(k+1)C−1 − inf
t′>0

n−t′(k+2)C−1))

≤C ′n−tC−1

,

where C ′ > 0 is some universal constant and in the third step we used (2.4). Now we choose
t so that tC−1 > 2. Then by a discussion similar to (S.33), we have

P(ξ2(1) − ξ2(2) ≤C−1 logn)≤ n2p2k ≤C ′n2−tC−1

.

This completes the proof of the first statement.
Finally, the last statement follows directly from the strong law of large number. In fact, the

result holds almost surely.
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Finally we prove Case (c) of Definition S.1.10.

Proof of Case (c). Note that the fourth statement holds trivially and surely.
For the first statement, under the assumption of (2.5), we see that the lower bound follows

from that

P(l− ξ2(1) > n−1/(d+1)−ϵd) =
(
1− P(l− ξ2(1) < n−1/(d+1)−ϵd)

)n
≥ (1−Cn−ϵd(d+1)−1)n

≥ 1−Cn−ϵd(d+1).

Similarly, for the upper bound, we find that when n is sufficiently large, for some constant
C ′ > 0

P(l− ξ2(1) > n−1/(d+1) logn)≤ n
(
1− P(l− ξ2 ≤ n−1/(d+1) logn)

)n−1

≤ n
(
1−C−1n−1 logd+1 n

)n−1

≤ ne−C−1 logd+1 n ⩽ n−C′
.

This completes the proof of the first statement.
For the third statement, we prove by contradiction, i.e., there exists some sequence an =

o(1), l − ξ⌊bn⌋ ⩽ an holds with high probability. In fact, by a discussion similar to (S.31)
using (2.5), we have that as long as c≡ cn > n/an,

P(l− ξ2(c) ⩽ an) = P(ξ2(c) ⩾ l− an)

=

n∑
k=c+1

(
n

k

)
P(ξ2 > l− an)

kP(ξ2 ≤ l− an)
n−k =O(n−C),

for some constant C > 0 when n is sufficiently large. This completes our proof for the third
statement.

For the second statement, its discussion is similar to (S.32). In this case, we will define
the partition of the intervals as Ik = [l − (k + 1)n−1/(d+1)−ϵd , l − kn−1/(d+1)−ϵd ] for k =
[[1, nϵd logn]]. Analogous to the arguments of (S.32), we have that

pk = P(ξ2 ∈ Ik)≤Cn−ϵdn−1/(d+1)(n−1/(d+1) logn)d =Cn−1−ϵd logd n.

Using the above control with (S.33), we readily obtain that

P(ξ2(1) − ξ2(2) ≤ n−1/(d+1)−ϵd)≤ n2p2k ≤Cn−2ϵd log2d n.

This completes the proof of the second statement.
Finally, we proceed to the proof of the last statement. Denote the random variable τξi as

follows

τξ2i :=
ξ2i

1 + ξ2im1n,c(z)
−
∫

t

1 + tm1n,c(z)
dF (t).

By definition Eτξ2i = 0. On the one hand, according to the discussion around (S.45), we find
that

1

n

p∑
i=1

σ2
i

∫
t2

|1+tm1n,c(z)|2dF (t)

|z − σi
∫

t
1+tm1n,c(z)

dF (t)|2
< 1.
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Together with Assumption S.1.1 and the continuity of m2n,c, we can therefore conclude that
for some constant C0 > 0, ∫

t2

|1 + tm1n,c(z)|2
dF (t)<C0.

As a consequence, by Cauchy-Schwarz inequality, we find that for some constants C1,C2 > 0

E|τξ2 |2 ≤C1

∫
t2

|1 + tm1n,c(z)|2
dF (t)<C2 <∞.

Since τξ2i ,1 ⩽ i ⩽ n, are independent, we can conclude our proof using Markov inequality.

S.6.3. Fluctuation averaging arguments: Proof of Lemma S.3.5

In this section, we prove the fluctuation averaging results in Lemma S.3.5 following the
strategies of Section 6 of [56]. Fluctuation averaging is a common step in the proof of local
laws for random matrix models, especially when the LSD has a square root decay behavior
near the edge so that the entries of the resolvents can be controlled under some ansatz; see
the monograph [36] for a review. However, in our setting, due to the lack of square root
decay as in (S.14), many entries of the resovelents, even the off-diagonal ones can be large
when η ∼ n−1/2. To address this issue, we will follow the strategies of [56] to focus on the
resolvent fractions instead of the entries themselves; see the discussion above Sections 6.1
of [52, 56]. In what follows, due to similarity, we focus on the parts which deviate from [56,
Section 6] the most.

Proof of Lemma S.3.5. In what follows, with loss of generality, we assume that ξ21 ⩾
ξ22 ⩾ · · ·⩾ ξ2n.

We start with part (1). Recall (S.9). Using Theorem S.1.9 and Remark S.2.9, we have that

|m2 −m
(1)
2 | ≤

∣∣∣∣ 1n ξ21
z(1 + ξ21m1n +O≺((nη0)−1))

∣∣∣∣
+

∣∣∣∣∣ 1n
p∑

i=2

O≺((nη0)
−1)

z(1 + ξ2im1n +O≺((nη0)−1))(1 + ξ2im1n +O≺((nη0)−1))

∣∣∣∣∣ .
For the first term on the right-hand side of the equation, it can be trivially bounded by (nη0)

−1

by a discussion similar to (S.23) using (S.18). The second term can also be controlled by
(nη0)

−1 using a discussion similar to (S.25). The proves the first equation in (S.27). For the
second equation, due to similarity, we focus on |m2 −m

(i)
2 |. Using (S.19), we have that

|m2 −m
(i)
2 | ≤ |Gii|

n
+

1

n

∑
j ̸=i

|Gjj −G(i)
jj |.(S.34)

For Gii, by Lemma S.1.13, Theorem S.1.9 and the assumption that z ∈ D′
b in (S.12), we

conclude that with high probability, for some constant C > 0

|Gii|=
1

|z(1 + ξ2im
(i)
1 +Zi)|

≤Cn1/(d+1)+ϵd .(S.35)

For Gjj −G(i)
jj , by Lemma S.1.13, (S.28) and Lemma S.1.15,

|Gjj −G(i)
jj |= |GijGji

Gii
| ≺ |Gii||G(i)

jj |
2 Imm

(ij)
1

nη0
≺ n2ϵd

n
|Gii||G(i)

jj |
2,
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where in the last step we used (S.18) and Theorem S.1.9. Inserting all the above bounds back
to (S.34) and use the trivial bound that |G(i)

jj |⩽ η0, we can conclude the proof. This completes
the proof of part (1).

We now proceed to the proof of parts (2) and (3). Due to similarity, we focus on the details
of part (2) and briefly mention how to prove (3) in the end. For simplicity, following the
conventions in [52, 56], we denote the operator

Pi := 1−Ei,

where Ei is the conditional expectation with respect to yi. Using Lemma S.1.13, we see that
on Ω

1

n

n∑
i=2

Pi(
1

Gii
) =

1

n

n∑
i=2

Pi(−z − zy∗
iG

(i)(z)yi) =− z

n

n∑
i=2

Zi.(S.36)

Consequently, it suffices to show that∣∣∣∣∣ 1n∑
i

Pi(
1

Gii
)

∣∣∣∣∣≺ n−1/2− 1

2
( 1

2
− 1

d+1
)+2ϵd .

By Chebyshev’s inequality, it suffices to prove the following lemma.

LEMMA S.6.2. Under the assumptions of Lemma S.3.5, for any z ∈D′
b and fixed even

number M ∈N, we have

EX

∣∣∣∣∣ 1n
n∑

i=2

Pi(
1

Gii(z)
)

∣∣∣∣∣
M

≺ nM(−1/2− 1

2
( 1

2
− 1

d+1
)+2ϵd).

PROOF. The proof strategy and technique follows closely from Section 6 of [56]. In what
follows, we adopt the way how [52, Section 6.3] generalizes [56, Section 6.2] and only check
the core estimates that have been used in [56]. We first provide some notations following the
conventions of [56, Section 6.1]. For any subset T ,T ′ ⊂ {1, . . . , n} with i, j /∈ T and j /∈ T ′,
we set

F
(T ,T ′)
ij ≡ F

(T ,T ′)
ij (z) :=

G(T )
ij (z)

G(T ′)
jj (z)

.

In case T = T ′ = ∅, we simply write Fij = F
(T ,T ′)
ij . With Lemma S.1.13, according to [56,

Lemma 6.1], we have that for any subset T ,T ′ ⊂ {1, . . . , p} with i, j /∈ T and j /∈ T ′, and
γ /∈ T

⋃
T ′

F
(T ,T ′)
ij = F

(T γ,T ′)
ij + F

(T ,T ′)
iγ F

(T ,T ′)
γj ,

and

F
(T ,T ′)
ij = F

(T ,T ′γ)
ij − F

(T ,T ′γ)
ij F

(T ,T ′)
jγ F

(T ,T ′)
γj .

Moreover, we have that for γ /∈ T
1

G(T )
ii

=
1

G(T γ)
ii

(
1− F

(T ,T )
iγ F

(T ,T )
γi

)
.
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In order to apply the techniques of [56, Section 6.2], we need to prove the following estimates

|m1(z)−m1n(z)| ≺ (nη0)
−1, Imm1(z)≺ (nη0)

−1,

∣∣∣∣Pi(
1

Gii
)

∣∣∣∣≺ (nη0)
−1, i ̸= 1,

max
i ̸=j

|Fij(z)| ≺ n−(1/2−1/(d+1))/2+ϵd , i, j ̸= 1,(S.37)

max
i ̸=j

∣∣∣∣∣F
(∅,i)
ij (z)

Gii(z)

∣∣∣∣∣≺ (nη0)
−1, i, j ̸= 1,

First, the first part of (S.37) follows from Theorem S.1.9, Lemma S.2.8 and Remark S.2.9
(recall (S.36)). Second, for the second part of (S.37), by a discussion similar to (S.35), for
i ̸= j and i, j ̸= 1, we have that for some constant C > 0, with high probability

(S.38) |G(j)
ii |⩽Cn1/(d+1)+ϵd .

Together with Lemma S.1.13, we see that for some constant C > 0

|Fij |= |zG(j)
ii y∗

iG
(ij)yj | ≺

∣∣∣∣zG(j)
ii

1

n
∥G(ij)Σ∥F

∣∣∣∣≤C
∣∣∣G(j)

ii

( Imm
(ij)
1

nη

)1/2∣∣∣
≺ n1/(d+1)+ϵd 1

nη0
= n1/(d+1)−1/2+2ϵd ,

where in the second step we used (S.28) and in the third step we used (S.38) and the fact
z ∈D′

b. Finally, for the third part of (S.37), using Lemma S.1.13, Lemma S.1.15 and (S.28),
we see that ∣∣∣F (∅,i)

ij

Gii

∣∣∣= ∣∣∣ Gij

G(i)
jj Gii

∣∣∣= ∣∣∣zy∗
iG

(ij)yj

∣∣∣≺
√

Imm
(ij)
1 (z)

nη
.

We can therefore conclude our proof using Lemma S.2.8, Remark S.2.9 and (S.29).
Using (S.37) and Assumption 2.1, we can follow the proof of Corollary 6.4 of [56] verba-

tim and conclude that for any T ,T ′,T ′′ ∈ {2, . . . , n} with |T |, |T ′|, |T ′′| ≤M, where M is
some large positive even integer, and for z ∈D′

b, we have that when i ̸= j, i, j ̸= 1,

|F (T ,T ′)
ij (z)| ≺ n−(1/2−1/(d+1))/2+ϵd ,∣∣∣F (T ′,T ′′)
ij (z)

G
(T )
ii (z)

∣∣∣≺ (nη0)
−1,

∣∣∣Pi

( 1

G(T )
ii

)∣∣∣≺ (nη0)
−1.

(S.39)

Once the key ingredients (S.37) and (S.39) have been proved, we can follow lines of [56,
Lemma 6.6] or [52, Lemma 6.11] to conclude the proof. Due to similarity, we omit the
details.

This completes the proof of part (2). The proof of part (3) is similar except we need to
following the proof of Lemma S.6.2 and [56, Lemma 6.12] to show

EX
∣∣∣ 1
n

n∑
i=2

1

(1 + ξ2im1n(z))2
Pi(

1

Gii(z)
)
∣∣∣M ≺ nM(−1/2− 1

2
( 1

2
− 1

d+1
)+2ϵd).

We omit the proof and refer the readers to the proof of [56, Lemma 6.12] for more details.
This completes the proof of Lemma S.3.5.
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